Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент линейного расширения температуры

Биметаллический чувствительный элемент (рис. 4.12, в, г) состоит из двух сваренных вместе металлических пластин с различными коэффициентами линейного расширения. Температуру измеряют по отклонению Аг конца биметаллического стержня или по углу Дф отклонения от исходного положения конца спирали.  [c.101]

Они вызваны существенными отличиями сталей по химическому составу коэффициентам линейного расширения температуре плавления и теплофизическим свойствам температуре фазовых и структурных превращений. Это приводит к получению швов аномального химического состава, которые принципиально отличаются от каждой из свариваемых сталей по механическим свойствам и их стабильности, склонности к закалке и структурным изменениям при нормальных и рабочих температурах в процессе эксплуатации.  [c.383]


Таблица 164 Связь между коэффициентами линейного расширения, температурами плавления металлов и симметрией кристаллических решеток Таблица 164 <a href="/info/525294">Связь между коэффициентами</a> <a href="/info/274119">линейного расширения</a>, <a href="/info/76965">температурами плавления металлов</a> и симметрией кристаллических решеток
Температура плавления, °С Температурный коэффициент линейного расширения,  [c.11]

Коэффициент линейного расширения а возрастает с повышением температуры < а если  [c.536]

Значения коэффициентов линейного расширения для некоторых металлов при разных температурах приведены в табл. 101.  [c.536]

Температура, при которой коэффициент линейного расширения сплава Fe —Ni резко возрастает, совпадает с точкой Кюри этого сплава.  [c.538]

Прочность болтов при высоких температурах. При высоких температурах в болтовом соединении могут возникать дополнительные температурные нагрузки. Эти нагрузки возникают в том случае, когда температурные коэффициенты линейного расширения материалов болта и соединяемых деталей неодинаковы. Температурные нагрузки подсчитывают по условию совместности деформаций, которые рассматривают в курсе сопротивления материалов. Температурные напряжения в болтах понижают путем применения материалов с близкими температурными коэффициентами линейного расширения пли постановки упругих прокладок, упругих болтов и шайб.  [c.36]

После некоторого времени работы при высоких температурах наблюдается заедание в резьбе, которое проявляется в том, что гайку не удается отвинтить или она отвинчивается с большим трудом, а резьба портится или разрушается. Для борьбы с заеданием необходимо изготовлять гайки из материалов, обладающих более высоким температурным коэффициентом линейного расширения по сравнению с ма-  [c.36]

Точные измерения необходимо выполнять в помещениях при температуре 20° G. В момент измерения объекты измерения и измерительные средства должны иметь одинаковую температуру и предохраняться от местного нагрева. Погрешность измерения А/ (мм), вызванная отклонениями от нормальной температуры и разностью коэффициентов линейного расширения материалов детали и измерительного средства, вычисляют по формуле  [c.79]


Мр2-коэффициенты линейного расширения материалов зубчатых колес и корпуса соответственно (см. табл. П25) Т, и Tj-расчетная температура нагрева зубчатых колес и корпуса соответственно а-угол зацепления (2 sin а = 0,684 при а = 20°).  [c.173]

Магний — щелочноземельный металл, II группы Периодической системы элементов, порядковый номер 12 (см. табл. 1), атомная масса 24,312. Цвет светло-серый. Характерным свойством магния является малая плотность 1,74 г/см , температура плавления магния 650 °С. Кристаллическая решетка гексагональная (с/а = 1,62354). Теплопроводность магния значительно меньше, чем у алюминия 125 Вт/(м-К), а коэффициенты линейного расширения примерно одинаковы (26,1 10 при (20—100 С) I. Технический магний Мг1 содержит 99,92 % Mg. В качестве примесей присутствуют Ре, Si, Ni, Na, Al, Мп. Вредными примесями являются Ре, Ni, Си и S1, снижающие коррозионную стойкость магния. Механические свойства литого магния сГв = 115 МПа, о ,., = 25 МПа, б 8 %, Е = = 45 ГПа, НВ 300 МПа, а деформированного (прессованные прутки) Оц 200 МПа, ст ,., = 9 МПа, б =-- 11,5 %, НВ 400 Л Па. На воздухе м, 11 ит легко воспламеняется. Используется в пиротехнике и химической промышленности.  [c.337]

Сплав 36Н обладает минимальным коэффициентом линейного расширения, не изменяющимся в интервале температур от —60 до +100° С.  [c.285]

В случаях, когда соединение работает при температуре, существенно отличающейся от температуры сборочного цеха, материалы соединяемых деталей имеют разные коэффициенты линейного расширения и деталь вращается с большой частотой (п>1000 об/мин), дополнительно вводят поправку на температурные деформации и на деформации от действия на соединения центробежных сил [15]. По найденной величине бтш подбирается одна из посадок, по СТ СЭВ  [c.42]

Плотность ситаллов 2,5 — 3 кгс/дм , теплоемкость 0,2 кал/(кг-°С), теплопроводность 2 — 4 кал/(м-ч °С). Модуль нормальной упругости 7000— 15 000 кгс/мм . Микротвердость 700-1200 кгс/мм . Коэффициент линейного расширения в зависимости от химического состава и строения ситалла колеблется от 30-Ю до 0. Таким образом, имеется возможность изготовлять изделия, не меняющие линейных размеров с изменением температуры и, следовательно, не подверженные тепловым напряжениям. Есть ситаллы с отрицательным коэффициентом линейного удлинения до —8-10 , размеры которых уменьшаются с повышением температуры.  [c.191]

Ситаллы с малым коэффициентом линейного расширения отличаются высокой термомеханической стойкостью (изделия из таких ситаллов, нагретые до 800 —900 С, можно безопасно погружать в холодную воду). Это свойство делает ситаллы особенно пригодными для изготовления деталей, подверженных действию высоких температур и тепловых ударов.  [c.191]

Коэффициент линейного расширения бетона (зс 12-10 l/°Q близок к коэффициенту линейного расширения стали, что обеспечивает хорошую связь между бетоном и элементами арматуры при колебаниях температуры.  [c.194]

Рис. 234. Коэффициент линейного расширения в функции температуры Рис. 234. <a href="/info/31262">Коэффициент линейного расширения</a> в функции температуры
Если перепад температур неустраним по функциональному назначению детали (трубы теплообменных аппаратов), то выгодно применять материалы с благоприятным сочетанием прочности, теплопроводности и теплового расширения. Например, трубы из ситаллов с нулевым коэффициентом линейного расширения совершенно не подвержены термическим напряжениям.  [c.375]

В узлах, состоящих из деталей, имеющих различную рабочую температуру иди изготовленных из материалов с разными коэффициентами линейного расширения, тепловые деформации могут существенно влиять на взаимное расположение деталей.  [c.377]


Примером может служить конструкция фиксирующего подшипника скольжения (рис, 250, а). Пусть вал изготовлен из стали с коэффициентом линейного расширения 1, а корпус подшипника — из сплава с 2. Рабочие температуры соответственно равны П и Гг.  [c.377]

Для изготовления керметов используют лишь небольшое число металлов. Пригодность применения того или иного металла в керметах определяют по следующим его свойствам температуре плавления, окисляемости, типу структуры, температуре заметного испарения, тем-тературному коэффициенту линейного расширения. Температура плавления металла — показатель возможного температурного предела применения кермета. С этой точки зрения такие элементы, как Si, Ti, Со, Ni, не позволяют создать высокотемпературный кермет, так как температура их плавления сравнительно невелика (1440—1725 С).  [c.241]

Теплопроводность изотропного графита при облучении при T Mnepaitype выше 600° С на 30—40% ниже, чем теплопроводность без облучения, коэффициент линейного расширения в результате облучения интегральным потоком нейтронов 4-1021 нейтр./см2 при температуре выше 1000°С сначала увеличивается примерно на 20%, а потом уменьшается на 30—75% начального значения. Физико-механические характеристики прессованных сортов графита под влиянием облучения меняются больше, чем изотропных сортов. Изменения происходят в направлениях вдоль и поперек оси прессования или выдавливания, причем эти изменения по осям довольно различи , что практически исключает возможность использования анизотропных сортов графита в виде крупноразмерных блоков в качестве конструкционного материала активной зоны реактора В ГР с призматическими твэлами [6]. Этот факт является весьма важным доказательством преимущества варианта реактора ВГР с шаровыми твэлами, поскольку твэлы при достижении интегрального потока (5—7)-10 нейтр./см и глубине выгорания топлива 10—15 /о выводятся из активной зоны, графитовые же блоки отражателя находятся в зоне существенно меньших температур и потоков нейтронов.  [c.29]

Сплав с 36% Ni называется инваром (неизменный), и его можно считать практически нерасширяюшимся. Этот сплав применяют во многих приборах для деталей, размеры которых не должны изменяться с изменением температуры. Следует иметь в виду, что малый коэффициент линейного расширения инвара сохраняется лишь в интервале от —80 до -f-100° выше и ни-х<е этого интервала коэффициент расширения инвара резко  [c.538]

Сплав с 42% Ni отличается тем, что имеет постоянный коэффициент линейного расширения (около 7,5Х Х10" ) в интервале от 20 до 200°С вне этого интервала температур его коэффициент возрастает, т. е. сплав расширяется более интенсивно (рис. 398). Другими словами, для сплавов системы Fe—Ni существует интервал температур, в пределах которого коэффициент линейного расширения остается постоянным. Верхняя чого асш р°ен спГа1ов Те- тсмпература ЭТОГО интервалз тем ВЫ-  [c.538]

Болты, стягивающие разрезную втулку маховика (рис. 5.35), нагревают, затем вводят в отверстия и завертывают ггйки до соприкосновения с фланцами (не затягивая). При остывании болты стягивают втулку (((тепловая затяжка ). Определить, Д( какой температуры f нужно нагреть болты, если усилие за-т5 жки должно быть равно 50 кн, я температура окружаюш,его вседуха составляет 20° С. Принять, что в процессе сборки болты о лаждаются на 25° С. Фланцы втулки считать недеформируемыми и их нагрев не учитывать. Коэффициент линейного расширения  [c.80]

Титан — металл серебристо-белого цвета, находится в IV группе Периодической системы (см. табл 1). Fro порядковый номер 22, атомная масса 47,9, температура плавления 1665 5 °С. Титан имеет две аллотропические модификации до 882 °С существует а-титан, который кристаллизуется в г. п. у. решетке с периодами а = = 0,29503 нм и с = 0,48631 нм (с/а — 1,5873), а при более высоких температурах — Р-титан, имеющий о. ц. к. решетку, период которой а — 0,33132 нм (при 900 °С). Плотность атитаиа составляет 4,505 г/см , Р-титана при 900 °С — 4,32 г/см Коэффициент линейного расширения титана в интервале 20—100 °С равен 8,3 10 теплопроводность при 50 °С составляет 15,4 Вт/(м К). Технический титан изготовляют трех марок ВТ1-00 (99,53 % Ti), ВТ1-0 (99,48 % Ti) и ВТЫ (99,44 % Ti).  [c.313]

Напряжения второго рода возникают вследствие неоднородности кристаллического строения и различия физико-механических свойств фаз и структур сплавов. Фазы, например в черных металлах, феррит, аустенит, цементит, графит обладают различной кристаллической решеткой их плотность, прочность и упругость, теплопроводность, теплоемкость, характеристики теплового расширения различные. Структуры, представляющие собой смесь фаз, например перлит в сталях, а также закалочные структуры, в свою очередь, обладают отличными от смежных структур свойствами. Различие кристаллической ориентации зерен металла обусловливает анизотропию физико-механических свойств микрообъемов металла. В результате совместного действия этих факторов возникают внутри-зеренные и межзеренные напряжения еще в нронессе первичной кристаллизации и при последующих прев эащениях во время охлаждения. При высоких температурах напряжения уравновешиваются благодаря пластичности материала. Однако они проявляются в низкотемпературной области, возникая при фазовой перекристаллизации и выпадении вторичных и третичных фаз (фазовый наклеп), при каждом общем или местном повышении температуры (из-за различия теплопроводности и коэффициентов линейного расширения структурных составляющих), приложении внешних нагрузок (из-за различия и анизотропии механических свойств), а также нрп наклепе, наступающем в результате общего или местного перехода напряжений за предел текучести материала.  [c.152]

При сопряжении деталей из легких сплавов со стальными деталяхга следует утатывать различие их коэффициентов линейного расширения. В неподвижных сопряжениях, когда расширение деталей, выполненных из легких сплавов, ограничено смежными стальными деталями, могут возникнуть высокие термические напряжения. В подвижных сочленениях, где охватываемая деталь выполнена из легкого сплава, а охватывающая из стали, например цилиндр двигателя внутреннего сгорания с алюминиевым поршнем, следует предусматривать увеличенные зазоры во избежание защемления поршня при повышенных температурах.  [c.186]


Торможение смежносзи. Примером торможения смежности является соединение деталей, имеющих при работе различную температуру или выполненных из материалов с неодинаковыми коэффициентами линейного расширения.  [c.360]

Пусть болт 1 и втулка 2 (рис. 232) изготовлены из материалов с коэффициентами линейного расширения и 2 и их температуры равны соответственно ti и ti- При нагреве от исходной температуры То болт и втулка в свободном состоянии удлинились бы на величины и / ijAii, где ATj = Tl — То АТг = Т — о — длина соединения. В стянутой системе образуется температурный натяг  [c.360]

Инвар (36Н) представляет сд ой железоникелевый сплав (36% N1, остальное Ге). Коэффициент линейного расширения в интервале температур от 0 до 100°С равен (О -г 1,5). резко повышается при (> 200°С (рис. 237). Еще более низким коэффициентом ливеДиого расширения [а = (0 0,5)-10 1/°С в интервале О-ЮО С] обладает суперинвар Н30К4Д  [c.363]


Смотреть страницы где упоминается термин Коэффициент линейного расширения температуры : [c.208]    [c.27]    [c.415]    [c.197]    [c.71]    [c.248]    [c.100]    [c.50]    [c.307]    [c.289]    [c.290]    [c.371]    [c.59]    [c.77]    [c.79]    [c.35]    [c.52]    [c.384]    [c.394]   
Теория упругости (1937) -- [ c.229 ]



ПОИСК



81, 82 — Коэффициенты линейного расширения 74 — Коэффициенты

Алюминий — Коэффициент линейного расширения в зависимости от температуры

Жаропрочные для работы при температуре 650850 °С — Виды поставляемого полуфабриката 296 — Длительная прочность 293—294 — Коэффициент линейного расширения 294 — Марки 289290 — Механические свойства 292 Модуль нормальной упругости 294 Назначение 289—290 — Предел прочности 293—294 — Твердость 293 Теплопроводность 294 — Технологические свойства 295 — Химический

Зависимость температурного коэффициента линейного расширения реакторного графита марки А от температуры термической обработки

Коэффициент линейного расширения

Коэффициент линейный

Коэффициенты линейного расширения а твердых тел для температур около

Коэффициенты линейного теплового расширения вблизи комнатной температуры

Коэффициенты расширения

Линейное расширение

С для работы при температуре 650850 °С — Виды поставляемого полуфабриката 289 — Длительная прочность 286—287 — Коэффициент линейного расширения 287 — Марки 282283 — Механические свойства 285 Назначение 282—283 — Предел ползучести 286—287 — Теплопроводность

Средний температурный коэффициент линейного расширения графита в интервале температур

Средний температурный коэффициент линейного расширения различиях коксо-пековых композиций в интервале температур

Средний температурный коэффициент линейного расширения сырьевых углеродных материалов с различной степенью карбонизации в интервале температур

Температура расширении

Удельный вес, коэффициент линейного расширения и температура плавления различных материалов



© 2025 Mash-xxl.info Реклама на сайте