Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифракция в матричное уравнение

Поскольку для наиболее важных случаев дифракции рентгеновских лучей и нейтронов и для отдельных случаев дифракции электронов максимальное число сильных дифрагированных пучков равно двум, можно принять полезное приближение, согласно которому отличны от нуля только две волновые амплитуды, о и Можно подчеркнуть, что это не есть приближение к общему решению в обычном смысле. Это решение другой и более простой задачи допущения о наличии некой области, в которой могут существовать только две волны. Тогда матричное уравнение (8.7) сразу упрощается  [c.181]


Наиболее интересным в плане получения самых разнообразных дифракционных характеристик, но и в то же время наиболее трудным для анализа является резонансный случай, в котором длина волны возбуждения соизмерима с периодом решеток. До широкого внедрения в практику расчетов средств электронно-вычислительной техники исследования в резонансной области обычно замыкались на анализе некоторых частных или предельных ситуаций [30—41]. Вынужденные довольствоваться малым, авторы указанных и других работ заложили прочный фундамент, на котором строится современное здание теории дифракции волн на периодических решетках в резонансной области частот. Действительно, практически в каждом широко используемом сегодня методе построения математических моделей для численных экспериментов на ЭВМ явно просматривается влияние идей и результатов, полученных в 40—60-х годах. Прежде всего это касается метода частичных областей (методов переразложения, сшивания) (25, 42—46], методов теории потенциала (интегральных уравнений) 17, 47—521, модифицированного метода Винера — Хопфа — Фока [53— 56], модифицированного метода вычетов [54], метода полуобращения матричных уравнений типа свертки [25, 57, 58]. Подобная преемственность наблюдается и в желании глубже проникнуть в суть явлений и эффектов, обнаруживаемых при исследовании процессов дифракции волн на решетках различных типов и геометрий в резонансной области частот. Вслед за работами Л. Н. Дерюгина [59, 60], в которых впервые на одном частном примере теоретически проанализированы поверхностный и двойной резонансы в отражательной решетке, появились работы с результатами всестороннего аналитического и численного исследований явлений аномального рассеяния волн в области точек скольжения (на рэлеевских длинах волн) [25, 61—65], полного резонансного прохождения [25, 66, 67] и полного резонансного отражения [7, 25, 29, 53, 57, 64, 68—77] плоских волн в случае полупрозрачных решеток, полного незеркального отражения волн отражательными решетками [25, 78—88] и т. д.  [c.7]

Во-вторых, результаты, полученные методом задачи Римана — Гильберта, охватывающим структуры из бесконечно тонких плоских экранов или экранов с осевой (центральной) симметрией, стимулировали поиск подходов, позволявших бы также эффективно анализировать электродинамические свойства решеток других типов. Эта проблема частично решена с появлением метода, в основе которого лежит аналитическое преобразование матричных уравнений типа свертки [25, 57, 58, 92, 93]. Методологическая основа у этих подходов общая — обращение части оператора некорректного исходного операторного уравнения. Отличает их техника выполнения процедуры полуобращения (решение задачи сопряжения теории аналитических функций и вычисление главных частей в разложении Миттаг — Леффлера мероморных функций), а также то, что в первом подходе выделяется и обращается статическая часть задачи (и = 0), а во втором — часть задачи, отвечающая определенной геометрии периодического рассеивателя. По существу при этом использовалась возможность явного аналитического решения задач статики и дифракции плоских волн на системе идеально проводящих полуплоскостей [38, 40]. Недавно полученные в [94—96] результаты, видимо, также могут послужить основой для создания новых вариантов метода полуобращения. Эффективность последнего подтверждается практическим решением проблемы дифракции волн в резонансной области частот на периодических решетках основных типов 124, 25, 58] идеально-проводящих эшелеттах, решетках жалюзи и ножевых, плоских ленточных и решетках из незамкнутых тонких экранов, решетках из брусьев металлических и диэлектрических с прямоуголь-  [c.8]


В последние десять — пятнадцать лет у нас в стране и за рубежом широкое развитие получили два прямых метода исследования задач дифракции. Один основан на приближенном решении строгого интегрального уравнения, полученного методами теории потенциала, а другой — на приближенном решении бесконечной системы обыкновенных дифференциальных уравнений с краевыми условиями на двух концах [47, 52, 206, 257, 258, 263 —265]. По эффективности эти методы эквивалентны методу частичных областей, приближенное решение обычно имеет относительную погрешность 2—5 %, а основные результаты в силу больших затрат машинного времени получены пока при 1/Х < 1,5, где I — характерный размер решетки. Построение строгого и эффективного решения задачи дифракции волн на эшелетте стало возможным благодаря использованию идеи частичного обращения оператора задачи. В [25, 58 при реализации этой идеи обращалась часть матричного оператора, соответствующая решетке из наклонных полуплоскостей [82, 83, 11, 112, 262]. Использование процедуры полуобращения в иной форме явилось предпосылкой для появления другого строгого метода [54, 266]. Ключевым моментом в нем является выделение и аналитическое обращение части решения, обеспечивающей правильное поведение поля вблизи ребер. Эффективности этих методов равнозначны, так как при одинаковых затратах машинного времени обеспечивают одинаковую точность окончательных результатов. Отметим, что применение метода работы [54] ограничено и пока не получило широкого развития на решетках другой геометрии, отличных от 90-градусного эшелетта. В то время как метод, развитый в [25, 58], привел к построению эффективных решений задач дифракции электромагнитных волн на эшелетте с несимметричными прямоугольными и острыми зубцами при произвольном падении первичной волны и любых соотношениях между длиной волны и периодом решетки. Результаты данной главы получены методом, приведенным в [25, 58].  [c.142]

В общем единственный способ оценить результат динамического взаимодействия большого числа пучков в кристалле — это выполнить большое количество подробных п-волновых вычислений для разных кристаллов, имеющих набор по толщине и ориентациям, и попытаться проанализировать результаты. Существуют, однако, специальные случаи, для которых результат п-волновой дифракции можно понять из сравнения с более простым аналогичным результатом для относительно малого числа пучков. Существуют случаи высокой симметрии в дифракционной картине, когда некоторые пучки из набора пучков эквивалентны в том смысле, что имеют равные ошибки возбуждения и взаимодействуют через эквивалентные значения структурного фактора Способ, в котором такие ряды эквивалентных пучков могут соединяться, давая для каждого ряда один характерный пучок, продемонстрировал Йённес [158], использовавший представление с помощью интегрального уравнения этот подход применял Фишер [137]. Другое приближение, через матричную формулировку уравнения (10.8), дал Фукухара 151 ].  [c.225]

В данном параграфе мы еще раз вернемся к рассмотрению задач дифракции плоской волны на неидеально проводящих периодических структурах гребенке и системе полуплоскостей. Здесь мы обсудим подход, основанный на непосредственном ре-щении систем линейных алгебраических уравнений, получаемых методом сщивания. Рещение таких систем эквивалентно обращению вполне непрерывного матричного оператора, поэтому их называют системами первого рода.  [c.156]


Смотреть страницы где упоминается термин Дифракция в матричное уравнение : [c.175]    [c.219]   
Физика дифракции (1979) -- [ c.178 ]



ПОИСК



Дифракция

Матричные ФПУ

Уравнение матричное



© 2025 Mash-xxl.info Реклама на сайте