Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость динамическая газа в критическая

Показание давления рю динамическом отверстии О можно считать надежным, что же касается работы статического отверстия, то относительно него следует сделать оговорку. При достаточно больших, хотя и меньших единицы, значениях числа Мх на сферической поверхности носика могут возникнуть зоны местных сверхзвуковых скоростей. Последующий переход от сверхзвуковых скоростей к дозвуковым вызовет возникновение на поверхности трубки перед статическим отверстием 8 скачков уплотнения и местные искажения давления. Наименьшее значение числа Мх < 1 набегающего потока, при котором на поверхности обтекаемого тела (в данном случае измерительной трубки) возникают сверхзвуковые зоны, называют критическим числом М и обозначают Мкр )- Если число Мх набегающего потока превосходит число Мкр, то пользование статическим отверстием становится ненадежным и необходимо каким-нибудь независимым путем определять давление р- в движущемся газе, например при движении газа по цилиндрической трубе измерять давление на стенке трубы в сечении, близком к носику скоростной трубки.  [c.142]


Широкие возможности решения задач о трении и конвективном тепломассообмене при градиентном течении жидкостей и газов дает теория пограничного слоя. Сопротивление, которое испытывает тело при движении в жидкости или газе, а также интенсивность тепломассообмена между жидкостью или газом и поверхностью тела в значительной степени обусловлены развитием динамического и теплового пограничных слоев. В случае образования на обтекаемой поверхности ламинарного пограничного слоя получены точные аналитические решения уравнений пограничного слоя для некоторого класса задач. Особенно простым классом точных решений этих уравнений являются автомодельные решения, имеющие место в случае, когда скорость внешнего потока пропорциональна степени расстояния х,. измеренного от передней критической точки, а также при плоскопараллельном и осесимметричном течении вблизи критической точки. В других случаях при невозможности получения точных решений надежные результаты дают методы численного интегрирования или приближенного решения интегральных уравнений количества движения, кинетической, тепловой или полной энергии для пограничного слоя. Разными авторами предложены методы преобразования уравнений пограничного слоя в сложных условиях тече-4  [c.4]

Здесь р, и, D, Г - плотность, скорость, тензор скоростей деформации, температура газа Р, Р) и - полное, среднее и динамическое давление g - ускорение массовой силы г , , - коэффициенты динамической, объемной вязкости и теплопроводности у - элемент объема области, V - ее полный объем. В качестве характерных масштабов использованы длина скорость U, время l /U , скорость деформации U H , ускорение силы тяжести Земли g плотность и температура в критической точке р и Т у коэффициенты теплопроводности Xq, вязкости Г о и теплоемкость при постоянном давлении q, соответствующие совершенному газу (параметры совершенного газа имеют индекс "О"). Здесь и далее размерные величины отмечены штрихом, безразмерные - без штриха.  [c.83]

Из приближенной формулы Графа следует, что в ламинарной области фильтрации линейная критическая скорость псевдоожижения не должна зависеть, даже для сжимаемых жидкостей (газов), от давления, по крайней мере в области невысоких давлений порядка 1 —10 ата. Для этой области, как известно [Л. 98], влиянием давления на динамический коэффициент вязкости можно пренебречь. Независимость от давления (в ламинарной области) подтверждена опытами Сеченова и Альтшулера [Л. 336] по псевдоожижению алюмосиликатного катализатора азотом при давлениях от 1 до 16 ата. Для так называемой турбз лентной области фильтрации Сеченов и Альтшз лер обнаружили, что линейное Шц.у изменяется обратно пропорционально корню квадратному из плотности газа, т. е. несколько уменьшается с повышением давления.  [c.60]


Анализ закритического поведения аэроуп-ругих систем важен, так как во многих случаях превышение критической скорости флаттера не вызывает мгновенного разрушения конструкции, а приводит к установившимся колебаниям. Характеристики этих колебаний (амплитуды, и частоты) используют для оценки времени функционирования конструкции до разрушения. Необходимо рассматривать конечные деформации и геометрическую нелинейность. Наряду с геометрическими нелинейностями для расчета критических параметров потери устойчивости и поведения конструкции при флаттере в ряде случаев важен учет неупругих свойств материалов и аэродинамических нелинейностей. Учет нелинейных факторов позволяет, в частности, обнаружить статические и динамические формы потери устойчивости при немалых возмущениях, которые могут реализоваться при меньших значениях сжимающих нагрузок и скоростей потока, чем те, которые получаются на основе линейной теории. В тонкостенных конструкциях конечные прогибы вызывают растягивающие усилия в срединной плоскости. Так, рассматривая в качестве модели обшивки бесконечно длинную пластину, лежащую на упругом основании и обтекаемую газом, приходим к уравнению  [c.523]

Динамическая устойчивость упругих систем, находящихся в потоке жидкости или газа, существенно зависит от взаимного расположения парциальных собственных частот. Сближение парциальных частот может послужить причиной снижения 1фитической скорости флаттера, т.е. дестабилизации невозмущенного состояния системы. Напротив, разводя некоторые парциальные частоты, можно добиться стабилизации. Явление стабилизации (дестабилизации) упругих панелей, находящихся в сверхзвуковом потоке газа, с подвещенными массами изложено в работе [12]. Если к упругой панели при помощи вязкоупругой подвески присоединена относительно малая дополнительная масса, то следует ожидать, что при этом" изменится и критическая скорость флаттера. Ответ на вопрос о характере изменения условий устойчивости не может быть дан в общей форме вследствие сложности задачи.  [c.524]

Регистрируя микроманометром отдельно давление Рао динамическом и давление p в статическом отверстии, определим число М1 движущегося газа, а йиая температуру газа, найдем скорость звука в движущемся газе, а следовательно, и саму скорость Измерение температуры можно производить, например, термопарой или другим термометрическим элементом, помещенным в такое место скоростной трубки или специального измерителя, где скорость равна нулю и можно быть уверенным, что измеряется температура изэнтропически заторможенного газа Гд. Таким местом является точка в лобовой части обтекаемого тела (например точка О на скоростной трубке), где поток разветвляется, — так называемая критическая точка потока. Замеряя непосредственно Т , найдем по ранее выведенной формуле  [c.196]


Смотреть страницы где упоминается термин Скорость динамическая газа в критическая : [c.151]   
Динамика многофазных сред. Ч.2 (1987) -- [ c.259 ]



ПОИСК



Скорость газа критическая

Скорость газов

Скорость динамическая

Скорость критическая



© 2025 Mash-xxl.info Реклама на сайте