Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка информации в реальном масштабе времени

Области устойчивости 329 Обработка информации в реальном масштабе времени 352  [c.532]

Взаимодействие света со звуком широко используется в современной оптике, оптоэлектронике, лазерной технике для управления когерентным световым излучением. Акусто-оитич. устройства позволяют управлять амплитудой, частотой, поляризацией, спектральным составом светового сигнала и направлением распространения светового луча. Акустооптич. приборы отличаются универсальностью, быстродействием, простотой конструкции, кроме того, позволяют вести параллельную обработку информации в реальном масштабе времени.  [c.31]


ВОЗМОЖНОСТЬ МИКРОПРОЦЕССОРНОГО УПРАВЛЕНИЯ СКАНИРОВАНИЕМ, ПРИЕМОМ И ОБРАБОТКОЙ ИНФОРМАЦИИ В РЕАЛЬНОМ МАСШТАБЕ ВРЕМЕНИ, С ВЫВОДОМ ТРЕХМЕРНОЙ КАРТИНЫ РАСПРЕДЕЛЕНИЯ ПАРАМЕТРОВ е, ц, Ь ПО ПОВЕРХНОСТИ.  [c.45]

ДИНАМИЧЕСКИЙ АНАЛИЗ - обработка сигналов в реальном масштабе времени при непосредственном их поступлении в анализатор спектра от источника информации.  [c.16]

Структуры, применяемые в Ф. р., можно использовать многократно запись после считывания стирается тепловой обработкой. Гл. достоинство- возможность считывания информации в реальном масштабе времени, т. е. сразу после записи, что позволяет применять Ф.р. для практически мгновенной передачи и преобразования изображений (напр., в телевидении). Высокая разрешающая способность и быстрое действие, характеризующие метод Ф.р., делают его перспективным для голографии, для использования в ЭВМ (в оперативной памяти, при вводе и выводе информации), для разл. видов оптич. обработки изображений.  [c.266]

Бурное развитие электронной техники, прежде всего твердотельной, характеризуется непрерывным расширением функциональных возможностей создаваемых новых типов элементов, приборов и систем, включая системы обработки сверхбольших потоков информации в реальном масштабе времени. Прогресс электроники во все возрастающей степени определяется особыми свойствами используемых материалов, в том числе (не в последнюю очередь) диэлектрических.  [c.6]

Акустооптические устройства обработки информации — процессоры. Акустооптич. приборы, рассмотренные выше, служат основой при создании различных функциональных устройств для обработки СВЧ сигналов (т. н. процессоров), к-рые в отличие от цифровых вычислительных машин позволяют обрабатывать информацию в реальном масштабе времени. Для выполнения такой обработки необходимо предварительное преобразование радиосигнала в звуковой. Параллельная обработка данных осуществляется путём одновременного считывания всей запасённой в звуковом импульсе информации при дифракции света на звуковом сигнале. Различают низкочастотные процессоры, использующие дифракцию Рамана — Ната и эффективные в области частот до 100 МГц, и высокочастотные брэгговские процессоры, работающие при / > 100 МГц.  [c.36]

В блоке 2 предварительная обработка видеоинформации может отсутствовать. Блок 3 может и не содержать буферную память, если ЭВМ обеспечивает обмен информацией в реальном масштабе времени или имеет память достаточного объема. Однако запоминающее устройство блока 3 может быть предназначено для хранения микропрограмм, позволяющих оперативно перестраивать алгоритмы и систему в ответ иа изменения в рабочей зоне (сцене) робота.  [c.87]


Дефектоскопическая информация во многих случаях представляет собой изображения различного типа. Например, при контроле усталостных трещин оператор сравнивает изображения эталонной и контролируемой поверхностей.. Аналогичные операции многократно выполняются при сравнении формы однотипных изделий, выявлении дефектов заданного типа на фоне структурных помех и т. д. Это вызывает утомление операторов и приводит -к ошибкам распознавания дефектов. Во всех этих случаях эффективно применение когерентно-оптических методов фильтрации основных частот изображения, позволяющих устранить ошибки операторов. Любое изображение можно представить его частотны.м спектром (спектром Фурье), представляющим собой совокупность синусоидальных решеток с различным периодом изменений яркости и различной ориентации на плоскости. Двумерное преобразование Фурье может быть -выполнено с помощью ЭВМ, однако оптические устройства выполняют эту операцию существенно проще и быстрее. Воздействуя на спектр изображения с помощью различных устройств (масок, диафрагм), можно осуществлять его обработку в реальном масштабе времени.  [c.97]

Управляющая программа, воплощающая через ЭВМ логику эксперимента, включает в себя во всех этих случаях достаточно широкий круг функциональных задач, решение которых должно осуществляться в реальном масштабе времени. В первую очередь это воспроизведение через цифро-аналоговый преобразователь (ЦАП) на основе требуемого алгоритма условий приложения во времени действующей нагрузки, т.е. требуемой формы цикла, и изменения последней как по типу, так и по характерным параметрам. Одновременно необходим прием информации с выбранного датчика обратной связи, ее анализ в свете исполнения задающего сигнала, выработка на основе такого анализа сигнала рассогласования и его направление к исполнительному органу. Наряду с циклом формирования задающего сигнала в управляющей программе последняя осуществляет координацию считывания сигналов с датчиков экспериментальной информации по параметрам нагрузки, деформации, температуры и других, осуществляет ее первичную обработку и регулирует в памяти для дальнейшего использования или хранения с возможностью выдачи по специальным запросам. Таким образом, реализуется заложенный в данном подходе широкий диапазон возможностей управления нагружением практически по любым законам изменения нагрузки в пределах технических характеристик испытательной машины. Программы управления для этого разрабатываются в конкретных вариантах применительно к определенным условиям испытаний.  [c.132]

На следующем этапе конкретизируется алгоритм управления точностью, т. е, составляется формализованное описание процессов обработки информации от САК и управления с помощью системы ЧПУ. Для обеспечения возможности реализации этого алгоритма в реальном масштабе времени производится окончательный выбор элементной базы для САК и системы ЧПУ. При этом система ЧПУ должна строиться на базе быстродействующих микропроцессоров и микроЭВМ.  [c.277]

Исходная информация об измеряемых виброакустических параметрах динамических звеньев объекта контроля может обрабатываться в диагностических целях как непосредственно в ходе функционирования объекта (в реальном масштабе времени), так и постфактум — по результатам проведенного эксперимента. Во втором (часто и в первом) случае неизбежной оказывается регистрация измеряемых электрических эквивалентов виброакустических параметров на магнитных носителях с последующим многократным воспроизведением записей, обработкой и анализом их на специализированной аппаратуре для статистических исследований и ЭВМ. При этом к магнитным регистраторам предъявляют повышенные требования к точности и синхронности записи — воспроизведения многих параметров, идентичности соответствующих каналов по АЧХ и ФЧХ, возможности одновременной регистрации как низких (включая постоянную составляющую), так и высоких частот, управляемому изменению скоростей протяжки ленты. Этим условиям удовлетворяют специальные прецизионные многоканальные магнитные регистраторы с частотной модуляцией записываемых сигналов в диапазоне частот О—20 кГц и выше.  [c.397]

В течение всего процесса испытания измеряется время, а обработка информации на ЭВМ осуществляется как в реальном масштабе времени, так и с последующей обработкой накопленных данных, в соответствии с основной блок-схемой и программой испытания.  [c.360]


Стали нормой перевод диагностической информации в двух- и трехмерное изображение с последующей обработкой в реальном масштабе времени, амплитудно-фазочастотная обработка многомерного сигнала, реконструктивная томография и т.д. Переход на экспертные диагностические многомашинные испытательные комплексы для крупных химических производств позволит определять остаточный ресурс оборудования и риск эксплуатации.  [c.33]

Акустооптич, процессоры. Акустооптич. приборы, рассмотренные выше, служат основой для создания устройств обработки СВЧ-сигналов — т. н. процессоров, к-рые, в отличие от цифровых вычислит. машин, позволяют производить обработку информации в реальном масштабе времени. В акустооптич. процессоре переменный во времени электрич. сигнал ]1реобразуется электроакустич. преобразователем в УЗ-волну, к-рая, распространяясь в АОЯ, соадаёт пространственное звуковое изображение сиг-  [c.48]

Определяющими особенностями применения технологии построения БД в ИАСУ ГПС являются ее иерархическая структура, отображенная на распределенную локальную вычислительную сеть (ЛВС) ЭВМ. Необходимость такой децентрализации в первом приближении определяется четырьмя уровнями в организационной структуре ИАСУ ГАЗ, а также спецификой информационных моделей основных подсистем ИАСУ ГАЗ, существенно различающихся по характеру и методам обработки информации. Реализация централизованного банка данных при значительной неравномерности потоков информации на четырех уровнях привела бы к усложнению системы и неэффективности использования локальной сети ЭВМ. Например, возникающие в ГАУ изменения состояния ГПМ (завершение операции, выход из строя модуля и др.) прерывают работу ЭВМ, требуют обработки информации в реальном масштабе времени в соответствии с системой установленных относительных и абсолютных приоритетов.  [c.170]

Особое место занимают устройства свертки и корреляции сигналов на ПАВ, использующие акустическую нелинейность пьезоэлектрика, возникающую в системе пьезоэлектрик — полупроводник. Конвольверы-корреляторы на ПАВ успешно применяются в радиолокации и автоматике для обработки больших потоков информации в реальном масштабе времени.  [c.151]

Это позволит существенно продвинуться в расширении функциональных возможностей в многоканальных радиоэлектронных устройствах обработки больших и сверхбольших (терабитных) потоков информации в реальном масштабе времени  [c.155]

Как указывалось выше, акустические методы и устройства обработки информации стали практически незаменимыми в ряде областей науки и техники, требующих обработки больших (вплоть до терабитных) потоков информации в реальном масштабе времени. Соответственно акустооптические устройства приобрели функции многоканальных полифункциональных процессоров, интеграль-  [c.227]

Создание материалов для акустоэлектроники с полевым управлением скоростью звука в пределах 0,05—0,1 от номинальной. Это позволит существенно продвинуться в расширении функциональных возможностей в многоканальных радиоэлектронных устройствах обработки больших потоков информации в реальном масштабе времени. Основанием для формулирования задачи являются экспериментально показанное полевое управление скоростью звука в полидоменных сегнетоэлектриках и выявленное воздействие регулируемого механического напряжения. Последнее представляет наибольший интерес у сегнетоэлектриков-сегнето-эластиков вблизи ФП. Не исключено, что практически важные результаты в этом направлении покажет изучение материалов, обладающих аномально высокой электрострикцией и уже успешно используемых в адаптивной оптике для непрерывной следящей юстировки элементов составных зеркал и т. п.  [c.270]

Задачей идентификации является экспериментальное определение характеристик динамических объектов и связанных с ними сигналов. Оценивание параметров системы производится в рамках математической модели определенного класса. При этом различие между реальным объектом или сигналом и соответствующей математической моделью должно быть по возможности минимально [ЗЛ2], [3.13]. Текущей ыЗеятификачаей будем называть процедуру определения параметров путем обработки на ЭВМ данных, которые поступают от объекта идентификации непосредственно в процессе его функционирования. В некоторых случаях измеряемые сигналы объекта первоначально накапливаются в виде блоков или массивов информации. Обработку такого типа принято именовать пакетной. Если же сигналы обрабатываются по истечении каждого такта квантования, то говорят, что обработка ведется в реальном масштабе времени.  [c.352]

Адаптивные промышленные роботы (ПР) представляют собой новую ступень развития робототехники, для которой характерно создание гибкопрограммируемых устройств, оснащенных средствами очувствления для получения информации об окружающей среде, предмете производства и состоянии механизмов робота. Адаптивные роботы предназначены для работы в условиях с заранее неизвестными изменениями окружающей среды, к которым они должны приспосабливаться. На пути развития адаптивных ПР много емких научных, технических и организационных проблем, связанных с созданием широкой номенклатуры специализированных датчиков и устройств для исследования и отображения окружающей среды, микропроцессорных систем обработки получаемой информации и ее использования для управления работой роботов, программирования процессов восприятия и реакции на получаемую информацию в реальном масштабе времени, повышением надежности и долговечности ПР, улучшением метрологических его характеристик и т. д.  [c.7]

Перспективным направлением в развитии вычислительных комплексов в целях достижения значительных скоростей обработки информации является создание многопроцессорных систем. Так, моделирование сложных оптико-электронных систем, проведение анализа протекающих в них процессов в реальном масштабе времени может потребовать высокой производительности обработки - по)5ядка 1 млрд. опер/с и вьппе. Требуемое быстродействие достижимо при использовании МВК.  [c.122]


Основные трудности в проведении испытаний цилиндрических трубчатых образцов связаны с созданием надежных приспособлений для захвата, а также с необходимостью получения п обработки большого количества информации. Различные решения проблемы создания надежных захватов были предложены в работах By [53], Коула и Пайпса [10], Лено [30]. Проблема обработки огромного количества результатов механических испытаний была решена использованием ЭВМ, работающих в реальном масштабе времени (By и Джерина [54]). Отработанная методика применения цилиндрических трубчатых образцов и создание гибких испытательных систем позволили получить надежные экспериментальные результаты,  [c.463]

Двухканапьный демодулятор мгновенной ампшпуды и частоты (ДМАЧ). Предназначен для обработки процессов, в частности виброакустических, поддающихся преобразованию в электрические сигналы, в целях вьщеления амплитудной и угловой модуляции этих сигналов. Он применяется в приборном комплексе, реализующем гибридную систему, позволяющую как диагностировать техническое состояние механизмов и машин по характеристикам их вибраций, так и производить анализ данных виброакустических испытаний. Использование прибора, осуществляющего демодуляцию в реальном масштабе времени, позволяет значительно сократить объем вводимой в компьютер информации и соответственно время диагностирования или анализа.  [c.231]

Альтернативой МПМ и сложным ММПС на их основе является программная реализация адаптивных систем управления на базе универсальных микроЭВМ, имеющих модули связи с объектом управления. Автоматизация проектирования адаптивных систем программного управления требует использования мощных операционных систем, поэтому микроЭВМ должна иметь большой объем оперативной памяти и содержать постоянные и перепрограммируемые запоминающие устройства, служащие для хранения программных модулей, реализующих алгоритмы обработки информации и управления. Другим важным требованием, предъявляемым к управляющим микроЭВМ, является то, что они должны осуществлять адаптивное управление оборудованием РТК в реальном масштабе времени.  [c.99]

Среди специализиров. МП можно выделить МП для обработки сигналов (сигнальные МП), к-рые по сути дела являются алгоритмич. МП, обрабатывающими информацию, заданную не в цифровом виде. При этом перед началом её цифровой обработки МП преобразует эту информацию в цифровой вид (напр., аналоговый сигнал — с помощью встроенного аналого-цифрового преобразователя). В случае аналоговых входных сигналов обрабатывающий их специализиров. МП наз. аналоговым МП [4]. Они могут выполнять функции любой аналоговой схемы (усиление сигнала, модуляцию, смещение, фильтрацию и др.) в реальном масштабе времени. При этом применение аналогового МП значительно повышает точность обработки сигналов, их воспроизводимость, расширяет функциональные возможности обработки сигналов за счёт цифровых методов.  [c.141]

Структурная схема подсистемы Пилот приведена на рис.38. Важное место в структуре подсистемы занимает графический редактор. Он выполняет две функции. Во-первых, редактор представляет собой управляющую оболочку для работы различных программных крейтов, реализующих такие функции как расчет, обработка запросов к специализированной базе данных и базе данных системы АОНИКА , вывод на экран или на печать различной информации, связанной с проведением сеансов моделирования. Во-вторых, редактор предназначен для создания графических топологических моделей различных физических процессов электрических, тепловых, механических и аэродинамических. В процессе функционирования графический редактор формирует действующую расчётную структуру в топологическом виде, которая в дальнейшем анализируется при помощи единого расчетного модуля в различных режимах (статический анализ, анализ во временной и частотной областях, анализ чувствительности). В процессе моделирования возможно применение принципа динамического изменения параметров элемента схемы или параметра конструкции (тюнинг в реальном масштабе времени). При таком подходе параметр маркируется и изменяется при помощи виртуального тюнера. Процесс изменения параметра сопровождается одновременным отображением результатов анализа в виде графиков и диаграмм. При таком подходе процесс анализа математической модели выполняется в фоновом (скрытом) режиме.  [c.94]

Появление книги связано с интенсивным развитием в настоящее время этой области науки и техники, находящейся на передовых рубежах научно-технического прогресса. Пространственные модуляторы света позволяют осуществить в реальном масштабе времени преобразование массивоп информаций, сигналов и изображений к тем самым реализовать огромные возможности, которые заложены в 011тических методах обработки информации. В частности, благодаря параллельной обработке больших массивов данных радикально повышается производительность вычислительных и информационных средств и обеспечиваются им новые фу1жциональные свойства.  [c.7]

В области применений ПВМС, наряду с активным развитием устройств отображения информации, преобразования изображений и систем обработки в реальном масштабе времени сигналов и изображений (в том тгисле гибридяых систем), исследуются возможности создания эффективных систем обнаружения и распознавания образов, а также матрично-векторных и других оптических вычислений,  [c.304]

Отметим, что ПВМС ПРОМ привлек значительное внимание ис-< следователей, он был одним из первых модуляторов, позволивших в лабораторных условиях макетировать системы оптической обработки информации, работающие в реальном масштабе времени [8.23—8.30].  [c.169]


Смотреть страницы где упоминается термин Обработка информации в реальном масштабе времени : [c.53]    [c.354]    [c.138]    [c.440]    [c.331]    [c.63]    [c.605]    [c.36]    [c.353]    [c.12]    [c.389]    [c.46]    [c.108]    [c.195]    [c.288]    [c.211]    [c.504]    [c.565]    [c.14]   
Цифровые системы управления (1984) -- [ c.352 ]



ПОИСК



Информация

Информация реальная

Масштаб времени

Масштабы

Обработка информации

Обработка информации в реальном

Реальный газ



© 2025 Mash-xxl.info Реклама на сайте