Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Больцмана уравнение, Ландау теория

Следовательно, мы должны были привнести их в окончательный результат, используя соотношение (11.2.14). Напротив, исходя из уравнения Больцмана, мы использовали для описания процесса столкновения точную динамическую модель. Наш расчет [равноценен явному вычислению функций памяти ф (Q) и а (Т) в рамках предложенной модели. Наградой служит тот факт, что теперь равновесное распределение следует из модели, а не привно- сится в нее. Поэтому уравнения Больцмана и Ландау представляют значительный шаг вперед на пути к разработке микроскопической теории неравновесных процессов. Однако не следует забывать о том, что уравнение Больцмана было выведено отнюдь не безупречным способом и что важная гипотеза молекулярного хаоса (Stosszahlansatz) находится в очевидном противоречии с механи- кой. Невозможно утверждать, что мы обладаем строгой микроскопической теорией необратимости до тех пор, пока не выясним этот важный вопрос. Указанная проблема рассматривается в общей теории, которая ввиду ее более абстрактного характера будет изложена в заключительной части книги.  [c.48]


Решения (2.97) и (2.98) носят асимптотический характер, они справедливы при заданном направлении времени на больших временах 1-Ц-ж и - -со соответственно. Кроме того, эти решения, каждое по отдельности, необратимы. Однако эта необратимость не противоречит обратимости во времени исходного уравнения (2.81). Дело в том, что обращение времени в решениях (2.97), (2.98) по отдельности незаконно, поскольку они получены в асимптотике при заданном направлении времени. В этом и лежит причина некорректности (неустойчивости) по обратному времени уравнений диффузии, теплопроводности, фильтрации жидкости, кинетических уравнений Больцмана в теории газов, кинетических уравнений Ландау и Ленарда-Балеску в теории плазмы и др.  [c.60]

Введенный вновь материал распределен по всем трем разделам книги. В качестве неполного перечня новых вопросов отметим в ч. I параграфы, посвященные изложению термодинамики диэлектриков и плазмы, парадоксу Гиббса и принципу Нернста, в ч. II — теорию орто- и парамодификаций, теорию тепловой ионизации и диссоциации молекул, дебаевское экранирование, электронный газ в полупроводниках, формулу Найквиста и особенно главу Фазовые переходы , в ч. III — параграфы Безразмерная форма уравнений Боголюбова , Методы решения уравнения Больцмана , параграфы, посвященные затуханию Ландау, кинетическому уравнению для плазмы и проблеме необратимости. Существенно переработана и расширена глава Элементы неравновесной термодинамики , в которой помимо более детального рассмотрения области, близкой к равновесию, введен параграф, посвященный качественному рассмотрению состояний, далеких от равновесия.  [c.7]

Первое существенное замечание состоит в следующем. В классической теории кинетическое уравнение в пределе слабого взаимодействия представляет собой дифферешщальное уравнение относительно переменной р. Такая его форма обусловлена тем, что в случав слабого взаимодействия отклонение траекторий частиц при столкновениях очень мало. Как показано в разд. 11.6, предложенный Ландау вывод уравнения, пол вшего его имя, из уравнения Больцмана основан именно на этой идее. В квантовых системах не существует подобной эквивалентности между пределом слабого взаимодействия и пределом малого отклонения. В квантовой механике даже слабый потенциал взаимодействия может привести к очень сильной передаче импульса вследствие принципа нвопрвделвнности Гейзенберга. Квантовый аналог полного уравнения Больцмана по форме точно совпадает с уравнением (18.8.1) это уравнение известно под названием уравнения Юлинга — Уленбека. Единственное отличив от (18.8.1) состоит в том, что функция W связана с точным сечением рассеяния для упругих столкновений, соответствующих заданному межмолеку-лярному потенциалу. Сечение рассеяния (18.8.2) соответствует первому отличному от нуля приближению для точного сечения рассеяния, т. е. первому борновскому приближению ).  [c.251]


Предположение об экранировке кулоновского взаимодействия частиц в плазме позволяет сохранить смысл интеграла столкновений Больцмана (или, что в известном смысле идентично, интеграла столкновений Ландау) применительно к кинетической теории газа заряженных частиц. Однако то, что радиус дебаевского экранирования кулоновского поля заряда определяется плотностью числа заряженных частиц, является указание.м на необходимость выхода за рамки представлений, положенных в основу вывода кинетического уравнения Больцмана, учитывающего лип1ь парные столкновения частиц. Такой выход получается при применении теории многих частиц, позволяющей не только обосновать обычную кинетическую теорию, но и построить аппарат, пригодный для анализа явлений, для которых кинетическое уравнение Больцмана оказывается непригодным. В настоящее время уже известен ряд таких явлений. Одно из них, связанное с эффектом дина-лсической поляризуемости плазмы и проявляющееся, с одной стороны, в экранировке кулоновского поля заряда, а с другой,— во взаимодействии заряженных частиц с колебаниями плалмы, мы и рассмотрим здесь.  [c.232]


Смотреть страницы где упоминается термин Больцмана уравнение, Ландау теория : [c.111]   
Равновесная и неравновесная статистическая механика Т.2 (1978) -- [ c.93 ]



ПОИСК



Больцмана уравнение

Больцмана уравнение, Ландау

Больцмана уравнение, Ландау уравнение)

Ландау

Ландау уравнение

Теории Уравнения

Теория Больцмана

Теория Ландау



© 2025 Mash-xxl.info Реклама на сайте