Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модуль упругости (по Навье)

В первых двух главах своей книги автор исследует простое сжатие и простое растяжение призматического бруса, причем отмечает, что для полного описания механических свойств материала недостаточно дать только его предел прочности, не необходимо также установить и его модуль упругости Е, который определяется у Навье как отношение нагрузки, приходящейся на единицу площади поперечного сечения, к произведенному ею относительному удлинению ). Так как для определения модуля упругости Е требуются измерения весьма малых удлинений, соответствующих упругой области, то из имевшегося в его распоряжении экспериментального материала Навье смог извлечь лишь весьма скудные данные для своей цели. Поэтому он поставил свои собственные опыты над железом, которое он применял в сооружении моста Инвалидов в Париже ). Таким путем он определил модуль упругости Е для этого материала.  [c.94]


Модуль упругости был введен впервые в механику упругого тела Томасом Юнгом (см. стр. 114). Но последний давал ему другое определение. В настоящее время общее признание получило определение Навье.  [c.94]

Представление о возможности полностью оценить упругие свойства изотропного тела одной постоянной (например, модулем упругости Е при растяжении) на ранних стадиях развития теории упругости пользовалось всеобщим признанием. Навье, Коши, Пуассон, Ламе, Клапейрон—все разделяли это мнение.  [c.263]

В 1807 г. английский ученый Томас К)нг ввел в науку модуль упругости, однако в то время понятие его определялось иначе, чем определяется теперь. Модуль упругости в его современном понятии ввел в сопротивление материалов французский ученый Луи-Навье (1785—1836). Он же сформулировал впервые математическое выражение закона Гука в виде формулы (6).  [c.57]

Заслуга введения в науку величины, характеризующей жесткость материала при деформации стержней, принадлежит английскому ученому Томасу Юнгу (1773—1829 гг.) и относится к 1807 г. Эта величина не представляла собой, одн.ако, модуля упругости Е в современном его понятии, она была только пропорциональна этому модулю. Заслуга введения в науку модуля Е в современном понятии принадлежит, по-видимому, Навье (1826 г.) им же впервые сформулирован закон Гука в форме зависимости (2).  [c.36]

Закон Гука в форме зависимости (2.4) и современное понятие модуля продольной упругости даны французским ученым Навье в 1826 г.  [c.39]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]


Роберт Гук (1635—1703) положил начало механике упругих тел, опубликовав в 1678 г. работу, в которой описал установленный им закон пропорциональности между нагрузкой и деформацией при растяжении. Томас Юнг (1773-1829) в самом начале XIX в. ввел понятие модуля упругости при растяжении и сжатии. Он установил также различие между деформацией растяжения или сжатия и деформацией сдвига. К этому же времени относятся работы Жозефа -Луи. Лагранжа (1736—1813) и Софи Жермен (1776- 1831). Они нашли решение зада чи об изгибе и колебаниях упругих иластинок. В дальнейшем теорию пластинок усовершенствовали С Пуассон (1781 — 1840) и Л. Навье (1785--I8361  [c.5]

Собственные научные исследования в области теории упругости были начаты Нейманном, когда Навье, Коши, Пуассон еще яродолжали активно работать в этой области и когда большое применение эта теория находила в оптике. В своей работе по двойному лучепреломлению ) Нейманн рассматривает твердое упругое тело, структура которого определяет три взаимно-перпендикулярные плоскости симметрии, и, следуя методу Навье (стр. 129), выводит для него уравнения равновесия, содержащие шесть упругих постоянных, и исследует распространение волн в этой упругой среде. В дальнейшем он заинтересовался непосредственно упругими свойствами кристаллов, имеющих три взаимно-перпеи-дикулярные плоскости симметрии ), и указал, каким образом нужно ставить опыты, чтобы получать непосредственным испыта-пием значения этнх шести постоянных. Он впервые вывел формулу для вычисления модуля упругости при растяжении для вырезанной из кристалла призмы, с произвольной ориентировкой оси. В этих ранних работах Нейманн кладет в основу своих исследований теорию молекулярного строения упругих тел и в соответствии с этим использует уменьшенное число упругих постоянных, как это делали до него Пуассон, а позднее Сен-Венан.  [c.300]

Труды Фойхта окончательно разрешили старый спор между двумя теориями о малом и большом числе упругих постоянных (рариконстантной и мультиконстантной теориями). Спор шел вокруг вопроса Определяется ли упругая изотропия одной или двумя постоянными И в общем случае упругой анизотропии требуется 15 или 21 постоянных Опыты Вертхейма и Кирх-гоффа не смогли дать ответа на этот вопрос вследствие несовершенства материала, который они применяли в своих исследованиях. Фойхт же использовал в экспериментах тонкие призмы, вырезанные в разных направлениях из монокристаллов. Модули упругости были определены из испытаний этих призм на кручение и на изгиб. В дополнение изучалась сжимаемость кристаллов под равномерным всесторонним гидростатическим давлением. Полученные результаты с полной ясностью засвидетельствовали невозможность тех соотношений между упругими постоянными, которых требовала рариконстантная теория. Этим самым была показана несостоятельность гипотезы молекулярных сил Навье— Пуассона.  [c.412]

Следующим шагом в развитии науки о прочности было открытие английским ученым Робертом Гуком (1635-1703) линейной зависимости между нагрузкой и деформацией - основного закона деформирования упругих тел. В 1676 году он опубликовал работу О восстановительной способности или об упругости , которая содержала описание ряда опытов с упругими телами. В этой книге закон упругости был сформулирован так Каково удлинение, такова и сила . Современная форма закону Гука была придана Томасом Юнгом (1773-1829). Вместо абсолютных величин (сила и удлинение), он ввел относительные (напряжение и деформация). Тогда оказалось, что коэффициент пропорциональности между напряжениями и относительными удлинениями, т.е. модуль Юнга в законе Гука является постоянной материала, а не конструкции и характеризуемого жесткость. В начале XIX века широкую известность получают работы французского ученого Луи Навье (1785-1836), издавшего в 1830г. первый учебник по механике материалов. Большой вклад в развитие теории изгиба и устойчивости стержней внес академик Петербургской академии наук Леонард Эйлер (1707-1783).  [c.14]


Вместо галилеевского принципа расчета по предельному, разрушающему состоянию стал утверждаться новый принцип рабочего состояния. Напряжения в рабочем состоянии каждого элемента предполагалось ограничить допустимыми, т. е. такими, чтобы возипкающие в нем изменения не возрастали со временем . Определение же напряженного состояния кан дого кусочка вещества внутри конструкции стало возможно с помощью выведенных Навье и Коши уравнений равновесия. Оказалось, что полная картина напряжений во внутренней точке тела описывается девятью величинами тремя напряженнями растяжения — сжатия и шестью сдвиговыми напряжениями, по они связаны шестью уравнениями равновесия, и независимых среди них, самое большее, три. Имя Пуассона обессмертили не только полученные им уравнения равновесия и колебания стержней, но н известный каждому инженеру коэффициент Пуассона, входящий наряду с модулем Юнга в наснорт любого упругого материала.  [c.22]


Смотреть страницы где упоминается термин Модуль упругости (по Навье) : [c.535]    [c.47]    [c.50]    [c.552]    [c.20]    [c.51]    [c.35]   
История науки о сопротивлении материалов (1957) -- [ c.94 ]



ПОИСК



Модуль упругости

Модуль упругости вес модуля

Навой 97, XIV

Навье



© 2025 Mash-xxl.info Реклама на сайте