Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость точек среды в переменных Лагранжа

Траектории отдельных точек сплошной среды, в которых соответствующий вектор скорости будет касательной, определяются уравнением (141.21), где t служит параметром. Способ описания движения (141.21) сплошной среды при помощи параметров а, Ь, с называется методом Лагранжа, а параметры а, Ь, с или Го — переменными. Лагранжа.  [c.220]

Если движение сплошной среды задано в переменных Лагранжа, то скорости и ускорения в этих переменных определяются по обычным формулам кинематики точки  [c.209]


Перемещения, скорости и ускорения точек сплошной среды в переменных Лагранжа  [c.331]

Переменные Лагранжа и Эйлера. Возможны два основных вида движения жидкости или газа установившееся и неустановившееся. Если в любой точке пространства давление, плотность, модуль и направление скорости частиц движуш,ейся среды во времени не изменяются, то такое движение жидкости или газа называется установившимся. Если эти параметры потока в данной точке изменяются во времени, то такое движение называется неустановившимся. Существует два метода описания движения жидкостей и газов, использующие переменные Лагранжа или переменные Эйлера. Метод Лагранжа позволяет изучить движение каждой индивидуальной частицы сплошной среды метод Эйлера позволяет изучить изменение параметров движущейся среды (давление, плотность, скорость) в данной точке пространства без исследования поведения каждой индивидуальной частицы в отдельности.  [c.230]

Если М —точка сплошной среды (деформируемого тела), заданная лагранжевыми координатами то ф = ф V, V, t). Лагранжевы координаты и время i называются переменными Лагранжа. Если величина ф является функцией переменных Лагранжа, говорят, что поле этой величины задано по Лагранжу. Точка зрения Лагранжа на изучение движения сплошной среды состоит в том, что наблюдатель следит с течением времени за величиной ф (скоростью, ускорением, температурой, плотностью и др.) в индивидуальных точках среды, фиксированных лагранжевыми (сопутствующими) координатами.  [c.51]

При определении скорости частицы среды в каждой точке пространства, с точки зрения Эйлера (в переменных Эйлера), следует иметь в виду, что имеет смысл рассматривать только очень малые (в пределе бесконечно малые) смещения Аг(г, t) частиц среды из данного положения. В методе Лагранжа смещения частиц среды (г — го) из данного положения рассматриваются как конечные. Поэтому в переменных Эйлера вектор скорости определяется следующим соотношением  [c.17]

В предыдущих главах мы пользовались эйлеровым методом описания движений жидкости. При использовании этого метода течение несжимаемой жидкости в момент I характеризуется полем скорости и(Х, 1)у т. е. значениями вектора скорости во всевозможных точках = Хи Х2, Хг) пространства (в настоящем разделе по причинам, которые будут ясны из дальнейшего, нам будет удобно обозначать координаты А /, а не л /, как в предыдущих главах). Уравнения гидродинамики (из которых давление можно исключить с помощью уравнения (1.9)) при этом в принципе позволяют определить значения переменных Эйлера и(Х, t) в любой момент времени > /о по заданным начальным значениям и(Х, о) = ио(Х). Однако для изучения таких явлений, как турбулентная диффузия (т. е. распространение примесей в поле турбулентности) или деформация материальных поверхностей и линий (состоящих из фиксированных элементов жидкости) в тур-булентном течении, более удобным оказывается лагранжев метод описания движений жидкости. Он заключается в том, что вместо скоростей жидкости в фиксированных точках X пространства за основу берется движение фиксированных жидких частиц , прослеживаемое, начиная от некоторого начального момента времени / = to. Под жидкими частицами при этом понимаются объемы жидкости, размеры которых очень велики по сравнению со средним расстоянием между молекулами (так что для соответствующих объемов имеет смысл говорить об их скорости, оставаясь в рамках механики сплошной среды), но все же настолько малы, что скорость и давление внутри частицы можно считать практически постоянными и в течение рассматриваемых промежутков времени эти частицы можно считать перемещающимися как одно целое (т. е. без заметной деформации). Лагранжев метод самым непосредственным образом связан с реальными движениями отдельных элементов жидкости, совокупность которых и составляет течение поэтому его можно считать физически более естественным, чем эйлеров метод описания. В то же время в аналитическом отношении использование переменных Лагранжа, относящихся к индивидуальным частицам жидкости, оказывается гораздо более громоздким, чем использование переменных Эйлера и(Х, t), вслед-  [c.483]


Наряду с переменными Эйлера часто пользуются переменными Лагранжа. В отличие от переменных Эйлера переменные Лагранжа связаны не с определенной точкой пространства, а с определенной частицей вещества. Наблюдение ведется не за точками физического пространства, а за фиксированными частицами среды. Газодинамические и тепловые величины, выраженные как функции лагранже-вых координат, характеризуют изменение плотности, давления, скорости и температуры каждой частицы вещества с течением времени.  [c.15]

Обычно, когда пользуются переменными Лагранжа, то для вычисления скорости и ускорения пользуются символом частной производной от координат по времени, подчеркивая этим то обстоятельство, что производная вычисляется для рассматриваемой частицы среды при фиксированных значениях параметров 1  [c.24]

Использование в качестве независимых переменных и I составляет точку зрения Лагранжа на изучение движения сплошной среды, которая, таким образом, существенно опирается на описание истории движения каждой точки сплошной среды в отдельности. Такое описание на практике оказывается часто слишком подробным и сложным, однако оно всегда подразумевается при формулировке физических законов. Кроме понятия закона движения, для описания движения сплошной среды необходимо ввести еще некоторые другие понятия, в частности понятия скорости и ускорения точек сплошной среды.  [c.28]


Смотреть страницы где упоминается термин Скорость точек среды в переменных Лагранжа : [c.34]    [c.461]    [c.174]   
Курс теоретической механики. Т.1 (1982) -- [ c.331 ]



ПОИСК



Лагранжа переменные

Переменные лагранжевы

Скорость переменный

Скорость точки

Три точки Лагранжа



© 2025 Mash-xxl.info Реклама на сайте