Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Детали для гражданской авиации

Применительно к ВС гражданской авиации развитие усталостных повреждений в процессе эксплуатации в элементах систем управления имеет различные последствия в зависимости от того, по какому критерию предельное состояние было достигнуто. Если предельный размер трещины приводит к полному разрушению детали, то это предельное состояние сопровождается не только нарушением функционирования системы в целом, но и связано с нарушением силовой связи сопряженных деталей. В случае нарушения только функционирования, когда предельный размер трещины в детали не достигнут, последствия от развития трещины не связаны с нарушением механических связей. Однако в обоих случаях нарушение функционирования системы управления приводит к частичной или полной потере управляемости, а следовательно, к предпосылке летного происшествия.  [c.740]


Многое еще предстоит усовершенствовать в области создания технологической базы, обеспечивающей массовое производство деталей из композиционных материалов. Следует подчеркнуть, что мероприятия, обеспечивающие надежное внедрение технологии массового производства в гражданскую авиацию, должны стать частью правительственных и промышленных программ. Они должны включать в себя также проектирование, изготовление и летную эксплуатацию нескольких основных и вспомогательных узлов и агрегатов, таких, как крылья, отсеки фюзеляжа и хвостового оперения, аналогичных рассмотренным в этой главе.  [c.77]

Применение счетчиков ресурса. Эквивалентные испытания авиационных двигателей показали, что наибольшие повреждения, особенно деталей горячей части, происходят при работе на наиболее тяжелом (взлетном) режиме. При эксплуатации процент использования тяжелых режимов в двигателях гражданской авиации различен, он зависит от продолжительности полета и других условий. В некоторых американских авиакомпаниях на двигателях устанавливается счетчик ресурса, учитывающий суммарную длительность наработки на тяжелых режимах и число полетных циклов.  [c.192]

В общей формуле предполагается, что усталостная прочность не зависит от состава сплава. Это видно также из экспериментальных данных, которые указывают на то, что алюминиевые сплавы типа А1—Си и А1—2п—Mg имеют одинаковую усталостную прочность. Эта тенденция относится только к гладким лабораторным образцам, испытываемым при идеальных условиях. В практике часто оказывается, что высокопрочные сплавы (содержащие цинк и магний) более чувствительны к средним напряжениям, чем менее прочные сплавы (содержащие медь, а не, цинк). Следовательно, для деталей, работающих при переменных нагрузках, более безопасно применять алюминиевые сплавы с более низкой прочностью типа А1—Си. В современной гражданской авиации с этой точки зрения имеется некоторое изменение [12], хотя еще недавно,, в 1951 г., было скорее правилом, чем исключением, проектировать новые гражданские самолеты из алюминиевых сплавов типа А1—2п—Mg.  [c.73]

В настоящее время эта проблема является первоочередной для двух групп объектов. К первой группе относятся самолеты гражданской авиации. Авиацию отличают высокий научно-технический уровень разработок, жесткие требования к весовым показателям, которые приводят к напряженности как конструкции планеров, так и деталей двигателей, а также высокие требования к безопасности полетов при наличии воздействий, не поддающихся прямому контролю. В авиации впервые была поставлена проблема индивидуального прогнозирования ресурса. Именно здесь впервые были применены датчики для регистрации нагрузок, действующих на самолет в процессе эксплуатации, а также датчики ресурса, позволяющие судить о накопленных в конструкции повреждениях, а следовательно, об остаточном ресурсе.  [c.10]


В самолетах, показавших хорошие эксплуатационные характеристики в период второй мировой войны, впоследствии начинали появляться неисправности вследствие усталостных разрушений. С прекращением военных действий число полетов сократилось, и на какое-то время усталостное разрушение военных самолетов перестало интересовать исследователей. Но эту болезнь унаследовали конструкции самолетов гражданской авиации. В 1948 г. разбился американский транспортный самолет гражданской авиации из-за усталостного разрушения главного узла крепления крыла. В 1951 г. в Австралии вследствие усталостного разрушения полки лонжерона потерпел аварию небольшой английский транспортный самолет. Во всех странах была введена инспекция самолетов, в результате которой все в большем количестве обнаруживались усталостные треш ины, требуюш ие ремонта или замены деталей.  [c.424]

Необходимый срок службы самолета гражданской авиации определяют исходя из всесторонних экономических соображений. Он составляет 10—15 лет. Конструктор прежде всего пытается обеспечить возможно более длительную эксплуатацию самолета без образования трещин. Для этого он применяет разработанную методику расчета, с помощью которой сводит к минимуму концентрацию напряжений и старается удерживать напряжения на возможно низком уровне, исходя из требований, предъявляемых к летным характеристикам. Для деталей, которые трудно ремонтировать или заменять, конструктор может попытаться обеспечить требуемую долговечность без образования трещин, равную сроку службы самолета. Однако для многих конструкций это не выполнимо. Кроме того, существует риск повреждения конструкции обслуживающим транспортом, камнем на взлетной полосе и  [c.425]

Области применения композиционных материалов не ограничены. Они применяются в авиации для высоконагруженных деталей самолетов (обшивки, лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора и турбины и т. д.), в космической технике для узлов силовых конструкций аппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т. д., в горной промышленности (буровой инструмент, детали комбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и т. д.) и в других областях народного хозяйства.  [c.427]

Композиционные материалы с металлической матрицей как конструкционные материалы используются практически во всех отраслях народного хозяйства в авиации — для изготовления высоконагруженных деталей (обшивки лонжеронов, панелей и др.) и двигателей (лопаток компрессоров и турбин и др.) самолетов в автомобилестроении — для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т.д., в горной промышленности (буровой инструмент, детали комбайнов и др.), в промышленном и гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и др.) и т.д.  [c.233]

Оценка влияния состояния поверхности образцов после их упрочнения на относительную живучесть материала была проведена применительно к титановым сплавам ВТЗ-1, ВТ-8, ВТ-22 и ОТ-4, которые вгароко используются в элементах конструкции ВС и ГТД гражданской авиации [106]. Были рассмотрены различные режимы нанесения на поверхность круглых образцов слоя хрома, который используют для снижения контактных повреждений для вращающихся деталей. Разработанная технология нанесения слоя хрома включает в себя первоначально этап подготовки поверхности путем упрочнения ее шариками, а далее осуществляется электрохимическое осаждение слоя хрома различной толщины за один или несколько этапов [107]. Были рассмотрены ситуации изменения режимов хромирования по трем параметрам размеру шариков, используемых для упрочнения поверхности, температуре раствора и величине тока в процессе нанесения хрома также рассмотрено одно-, трех- и шестикратное хромирование. Испытания на усталость выполнены при растяжении и изгибе с вращением корсетных, круглых образцов диаметром в рабочей зоне 8 мм в диапазоне уровней напряжения 330-850 МПа. Длительность роста трещины определяли фрак-тографически после достижения глубины около  [c.64]


Следует отметить, что переходные и стационарные этапы теплового режима нагружения изделия по-разному влияют на ресурс работы конструктивных элементов. В исчерпании несущей способности конструктивных элементов транспортных газотурбинных и паросиловых установок основная роль принадлежит нестационарным режимам, при которых в элементах создаются экстремальные напряженные и тепловые состояния, оказывающие определяющее влияние на процесс разрушения. Например, анализ работоспособности лопаток первой ступени турбины из сплава ЖС6К одного из авиационных двигателей по трем характерным режимам (запуск—опробование—остановка, запуск—остановка и запуск—взлет) термоциклического нагружения показал, что доминирующая роль в разрушении этих элементов принадлежит неустановившимся режимам теплового цикла [49]. Этот факт подтверждают также результаты анализа отбраковки лопаток при варьировании нестационарной части цикла в пропессе эксплуатации 175 двигателей [49] при сравнительно небольшом увеличении длительности нестационарной части (5%) характерна более ранняя отбраковка деталей. Для двигателей гражданской авиации с уменьшением дальности полета существенно возрастает досрочный съем двигателя с эксплуатации, что также вызвано увеличением длительности нестационарных режимов за суммарное время эксплуатации.  [c.7]

Некоторые из первых КУС конструкций включали конец крыла самолета С-141 (фирмы Локхид ), Эпоксидно-бороволокнистая концевая часть крыла стала первой деталью с использованием борного волокна, зарегистрированной в федеральном управлении гражданской авиации. Гребень консоли крыла самолета марки А6-А, изготовленный фирмой Грумман , представлял собой одну из первых деталей на основе эпоксидно-бороволокнистого материала, изготовленную на достаточно широкой основе. Испытание поверхности после 200 ч полета показало необходимость использования защитного покрытия для этих материалов.  [c.546]

Конструкции на основе КУС для гражданской авиации США исследовались Национальным управлением США по аэронавтике и исследованию космического пространства (НАСА) в течение нескольких последних лет. Первоначальные исследования проводили лишь на ненесущих конструкциях, таких как зализ стыка крыла с фюзеляжем, рулевые поверхности, а также для повыше ния устойчивости металлических деталей к усталостным воздействиям, Длительные испытания но определению срока службы показали, что детали и узлы, не имеющие сотовых заполнителей, эффективны по своему конструктивному решению, долговечны, хорошо обслуживаются и ремонтопригодны. Коррозия, проникновение влаги и нарушение адгезивной связи (расклеивание) между деталями являлись основными ограничениями для Сандвичевых конструкций С алюминиевым сотовым заполнителем. Эти первоначальные исследования во всех случаях показали, что использование композитов дает существенные преимущества. На основе этих данных в настоящее время композиты используются в несущих конструкциях. Результаты типичного исследования взаимосвязи процентной доли использования композита и массы стоимости, прибыли на капиталовложения и полезной нагрузки показаны на рис. 28.11 [6J.  [c.555]

Кроме указанных трех ведущих научных школ по триботехнике, в последнее время сформировались новые научные направления расчет деталей на износ —МВТУ им. Н. Э. Баумана (А. G. Про-ников) изнашивание и трение металлов в углеводородных жидкостях — Киевский институт инженеров гражданской авиации (А. А. Аксенов) контакт деталей и физика изнашивания — Калининский политехнический институт (Н. Б. Демкин) тепловая динамика трения — Институт машиноведения им. А. А. Благонравова АН СССР (А. В. Чичинадзе) абразивное изнашивание в условиях удара — Московский институт нефтехимической и газовой промышленности им. И. М. Губкина (В. Н. Виноградов) конструктивная износостойкость — ВИСХОМ (М. М. Тененбаум) износостойкость деталей узлов трения железнодорожного транспорта — Ростовский институт инженеров железнодорожного транспорта (Ю. А. Евдокимов) износостойкость деталей узлов трения машин пищевой промышленности — Киевский институт пищевой промышленности (Г. А. Прейс) физические процессы при абразивном изнашивании — Сибирский физико-технический институт им. В. Д. Кузнецова при Томском государственном университете (В. Н. Кащеев) технологические методы повышения износостойкости — Институт твердых сплавов АН УССР (Э. В. Рыжов) связь структуры металлов с износостойкостью — Институт машиноведения им. А. А. Благонравова АН СССР (Л. М. Рыбакова и Л. И. Куксенова) и др.  [c.26]


Смотреть страницы где упоминается термин Детали для гражданской авиации : [c.546]    [c.548]    [c.218]    [c.302]    [c.26]   
Справочник по композиционным материалам Книга 2 (1988) -- [ c.556 ]



ПОИСК



Авиация

Гражданская авиация



© 2025 Mash-xxl.info Реклама на сайте