Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Легирующие элементы ниобий

За рубежом для изготовления таких труб применялась сталь, прокатываемая по контролируемым режимам на специальных станах и содержаш,ая дефицитные легирующие элементы — ниобий, молибден, и, в некоторых случаях, никель. Цена труб при этом существенно повысилась.  [c.5]

Каждый легирующий элемент обозначается буквой Н — никель X — хром К — кобальт М — молибден Г — марганец Д — медь Р — бор Б — ниобий Ц — цирконий С — кремний П — фосфор Ч — редкоземельные металлы В — вольфрам Т — титан А — азот Ф — ванадий Ю — алюминий.  [c.363]


Улучшаемые стали содержат 0,3—0,4%С и разное количество легирующих элементов (хром, никель, молибден, вольфрам, марганец, кремний) в сумме не более 3—5%, и часто около 0,1% измельчителей зерна (ванадий, титан, ниобий, цирконий).  [c.383]

Проведено большое количество исследований для изыскания жаростойких сплавов на основе молибдена или ниобия. Однако эти попытки следует считать малоудачными, так как для более или менее заметного эффекта по уменьшению окисляемости следует вводить значительное количество легирующих элементов, что значительно ухудшает технологическую пластичность и, как правило, снижает температуру плавления, а следовательно, и жаростойкость. Кроме того, несмотря на то, что для молибдена, например,  [c.533]

Рис. 114. Зависи.мость скорости окисления ниобия в воздухе при 980 С от легирующих элементов Рис. 114. Зависи.мость <a href="/info/47959">скорости окисления</a> ниобия в воздухе при 980 С от легирующих элементов
Легирующими элементами являются для молибдена — Н и 2г для хрома — Ре или НЬ, Та, Т1 и 2г для ниобия — У, Мо и 2г и т. д.  [c.228]

Влияние легирующих элементов Высокая жаропрочность стали достигается путем легирования ее хромом, никелем, молибденом, вольфрамом, ниобием, ванадием, ко()альтом, титаном, алюминием и другими элементами.  [c.48]

На рис. 41 приведены данные о влиянии легирующих элементов на временное сопротивление ниобия при кратковременных испытаниях на растяжение при 1095°С. К числу эффективных упрочнителей ниобия (см. рис. 41) относятся хром и алюминий. Ванадий, цирконий, гафний, молибден и вольфрам эффективно упрочняют ниобий при введении в количествах 5 - 20% (по массе), а титан и тантал практически не упрочняют его.  [c.89]

Рис. 41. Влияние легирующих элементов на прирост временного сопротивления ниобия при 1095-С Рис. 41. <a href="/info/58162">Влияние легирующих элементов</a> на прирост <a href="/info/1472">временного сопротивления</a> ниобия при 1095-С
Промышленное применение получили сплавы ниобия F80 (плотность 8,62 г/см ) и F82 (плотность 10,82 г/см ) первый сплав - в качестве легирующих элементов содержит только цирконий, а второй - тантал и цирконий сплав ниобия с 0,75 - 1 % Zr имеет температуру плавления 2400 С,  [c.90]


Для повышения жаропрочности молибдена лучшими легирующими элементами являются цирконий, титан и ниобий, причем в среднем вводят 0,1 %Zr, 0,5%Ti и 0,75%МЬ. Выяснено также, что в деформированном состоянии жаропрочность молибдена и его сплавов выше, чем в рекристаллизованном (рис. 42, 43).  [c.92]

Тантал и его сплавы на основе хрома, вольфрама и ниобия содержат 1 - 2 легирующего элемента и являются перспективными материалами, работающими при температурах 1500°С и выше для авиационной и космической техники. Диаграммы состояния Та - Nb и Та - W представлены на рис. 44.  [c.94]

Окисление алюминия, титана, ниобия. Жаропрочные сплавы, кроме основных легирующих элементов (Сг, Мо, W), дополнительно легируют элементами А1, Ti, Nb, Та. Эти элементы обладают большим сродством к кислороду, чем Сг, W, Fe, Мо, Ni, Со и в  [c.272]

В составы титановых сплавов, кроме алюминия, дополнительно вводят молибден, ванадий, цирконий, хром, кремний, олово, ниобий и железо. Эти легирующие элементы, а также попадающие примеси изменяют температуру полиморфного превращения титана.  [c.298]

В сталях в качестве легирующего элемента используют преимущественно ниобий. Добавки ниобия в нержавеющие стали устраняют интеркристаллитную коррозию стали. Применяют легирование- ниобием и других сортов стали.  [c.514]

Стойкость нержавеющих сталей в азотной кислоте определяется не только их Химическим составом, но и металлургическими и технологическими факторами. Для повышения коррозионной стойкости сталей следует стремиться к возможно более низкому содержанию углерода (не более 0,03%, а лучше - 0,02%), кремния (не более 0,40%), фосфора и серы (способствует селективной коррозии). Введение в качестве легирующих элементов стабилизаторов (титана и ниобия) не всегда оправдано, поскольку из- за образования карбидов и карбонитридов, легко растворяющихся под воздействием азотной кислоты, стойкость сталей может резко снижаться. Благоприятно влияют на стойкость сталей в азот-8626 КЗК 45 6 21  [c.21]

Удовлетворительно ковались лишь сплавы ниобия с Ti, Nb и Та сплавы с W, Мо и V ковались при содержании этих элементов до 5-10 ат.%. При более высоком содержании легирующих элементов слитки сплавов ниобия при ковке разрушались.  [c.12]

Р и с. 7. Влияние легирующих элементов на температуру рекристаллизации ниобия [15)  [c.17]

Испытания в кипящей серной кислоте показали, что качественное влияние легирующих элементов на коррозионную стойкость ниобия в этой среде такое же (рис. 68), как и при испытаниях в соляной кислоте, однако количественное влияние элементов неодинаково (рис. 69). Ti, V и Zr, уменьшают стойкость ниобия в кипящей серной кислоте, хотя начальные присадки V и Zr (до 5 ат.%) и Ti (до 10 ат.%) еще не оказывают влияния на стойкость ниобия. Это имеет значение как средство удешевления сплава без понижения его коррозионной стойкости (например, введение Ti в количестве 10 ат.% 18% по массе). Та, как и Мо, уменьшает скорость коррозии ниобия, причем Та более интенсивно, чем Мо.  [c.69]

Рис. 69. Влияние легирующих элементов на коррозионную стойкость сплавов ниобия в кипящей 40%-ной Н, SO Рис. 69. <a href="/info/58162">Влияние легирующих элементов</a> на <a href="/info/57689">коррозионную стойкость сплавов</a> ниобия в кипящей 40%-ной Н, SO
В литературе имеются сведения [62] о связи валентности второго металлического элемента в окалине со скоростью окисления. Надо полагать, что при коррозионном процессе, при котором происходит как окисление, так и ионный обмен, проводимость защитной пленки имеет очень важное значение. Это подтверждается корреляцией между коррозионной стойкостью сплава и валентностью легирующих элементов. Элементы с большей валентностью (Мо) уменьшают проводимость пленки и повышают устойчивость сплава, элементы с меньшей валентностью (Ti, Zr), наоборот, увеличивают проводимость пленки, что должно уменьшать устойчивость ниобия в агрессивных кислотных средах.  [c.73]


На рис. 79 показана допустимая концентрация кипящей фосфорной кислоты, при которой скорость коррозии не превышает 0,1 мм/год (1 балл коррозионной стойкости). Преимущество, точнее, меньшее отрицательное влияние ниобия на коррозионную стойкость тантала по сравнению с другими легирующими элементами проявляется вполне определенно. Возможно, что и при работе в серной кислоте ниобий меньше, чем другие элементы, понижает коррозионную стойкость тантала, если ограничить скорость коррозии более строгими допусками.  [c.79]

Установлено, что коррозионная стойкость хромомарганцевых сплавов в открытой атмосфере и в морской воде не всегда оказывается в прямой зависимости от концентрации легирующего элемента. Например, хромомарганцевая сталь, содержащая 25% хрома и 15% марганца, не имеет большого преимущества перед остальными хромомарганцевыми сплавами, содержащими сравнительно меньше хрома. Хромомарганцевые сплавы, легированные ниобием, в открытой атмосфере не имели преимущества по коррозионной стойкости перед другими хромомарганцевыми сплавами, а в морской воде они оказались более коррозионностойкими. Коррозионная стойкость любого сплава во многом зависит от правильного подбора легирующих элементов и их процентного соотношения с учетом характера агрессивной среды.  [c.63]

Как же влияют на температуру плавления никелевых сплавов добавки легирующих элементов Лишь два элемента вольфрам и ниобий — повышают эту температуру. Все остальные в разной степени снижают ее. Кобальт, железо и хром в большом интервале концентраций с основным элементом сплава образуют непрерывные твердые растворы. У тантала, ванадия, молибдена, алюминия, марганца, титана, кремния, циркония гораздо меньшая растворимость. При сравнительно небольшом содержании их  [c.40]

Легирующие элементы обозначают следующими буквами Н — никель, X — хром, К — кобальт, В — вольфрам, М — молибден, Т — титан, С — кремний, Ф — ванадий, Г — марганец, Д — медь, П — фосфор, Ю — алюминий, Б — ниобий, Р — бор, Н — цирконий, А — азот, Ч — редкоземельные металлы.  [c.143]

Железо, алюминий, никель и кобальт являются основными компонентами. Медь, титан и ниобий относятся к легирующим присадкам. Углерод, сера, фосфор, марганец и кремний — примеси, допустимое содержание которых составляет доли процента. Исключением является только кремний, который в зависимости от процентного содержания никеля является или вредной примесью или легирующим элементом, Влияние содержания элементов на свойства сплавов приведено в табл. 24.  [c.97]

К этой же группе легирующих элементов надо отнести бор, цирконии, ниобий содержант эти элеме1ггы  [c.133]

При сварке легированных сталей диаграмма Fe—О — С существенно усложнится из-за образования более устойчивых, чем РезС, карбидов (легирующие элементы Сг, Мп, ванадий, ниобий, титан), а также из-за смещения границ растворимости карбидов в твердых растворах 7-Fe (никель).  [c.341]

При дальнейшем медленном охлаждении непрерывные твердые растворы этих двойных систем в определенном интервале концентраций образуют химические соединения FeNi3 РеСо, РеСг и FeV. Марганец, вольфрам, молибден, титан, ниобий, алюминий и цирконий образуют с железом твердые растворы замещения ограниченной растворимости. Причем, если количество введенных элементов превышает их предел растворимости с железом, то легирующие элементы образуют с железом химические соединения. На рис. 22 показана диаграмма состояния Fe - W. Тип диаграммы характерен для систем Fe - А1 (рис. 23), Fe - Si, Fe - Mo, Fe - Ti, Fe - Та и Fe - Be.  [c.45]

Основным легирующим элементом 6ojTbuiHH TBa легированных сталей является хром. К коррозионностойким относятся такие стали и сплавы, содержание хрома в которых составляет не менее 12%. Кроме того, в зависимости от назначения хромистых сталей их дополнительно легируют никелем, молибде- ном, кремнием, медью, алюминием, титаном, ниобием, азотом, и некоторыми другими элементами.  [c.12]

Влияние легирующих элементов на жаропрочность. Высокая жаропрочность стали достигается путем легирования ее хромом, никелем, молибденом, вольфрамом, ниобием, ванадием, кобальтом, титаном, азюминием. По мере увеличения в сплаве числа легирующих элементов и повышения их  [c.101]

Повьниение коррозионной стойкости ванадия при легировании ниобием, танталом и другими, но не титаном, элементами, по-видимому, связано с образованием устойчивых окислов легирующих элементов. Вместо неустойчивого, рыхлого окисла VjOj при этом образуется, вероятно, более плотный окисел, представляющий собой твердый раствор на базе этого соединения — типа (V, Nb) 2 Os или (V, Та) 2 Oj.  [c.66]

Характер влияния легирующих элементов на коррозионную стойкость ниобиевых сплавов в кипящей фосфорной кислоте аналогичен их влиянию на коррозионную стойкость в кипящих соляной и серной кислотах. Поэтому данные по коррозионной стойкости в кипящей фосфорной кислоте р зависимости от ее концентрации приведем только для сплавов системы Nb-Ta как наиболее перспективных (рис. 71). Влияние легирующих элементов на коррозионную стойкость сплавов ниобия в 60%-ной кипящей Н3РО4 показано на рис. 72. Как и в других кислотах, Ti, V и Zr понижают коррозионную стойкость ниобия, а Мо и Та повышают. Таким образом, испытания сплавов ниобия в трех типичных неорганических кислотах соляной, серной и фосфорной — показали, что V, Zr и Ti оказывают отрицательное влияние на коррозионн)пю стойкость ниобия, а Мо и Та - положительное.  [c.70]

Отдельное исследование и специально поставленные зсперименты, очевидно, позволят установить причины различного влияния этих элементов на коррозионную стойкость ниобия. Пока по этому вопросу можно высказать лишь некоторые предположения. Взаимное расположение в ряду напряжений ниобия и легирующих элементов (yjji =-1,63 ( zr - 1.53  [c.70]


Рис. 72. Влияние легирующих элементов на коррозионную стойкость сплавов ниобия в 60%-ной кипящей Н3Ю4 [52] Рис. 72. <a href="/info/58162">Влияние легирующих элементов</a> на <a href="/info/57689">коррозионную стойкость сплавов</a> ниобия в 60%-ной кипящей Н3Ю4 [52]
Сказанное вьиые эго лишь перечисление возможных объяснений влияния легирующих элементов на коррозионную стойкость ниобия, которые в какой-то степени можно распространить и на сплавы других тз оплав-ких металлов. Как и другие тугоплавкие металлы, ниобий и его сплавы при работе в кислотах наводороживаются и охрупчиваются. Насьпцение ниобия водородом до 0,02—0,03% приводит к полной потере пластичности. Вторая фаза - гидриды - обнаруживается при большем содержании водорода (при 0,08%). Легирование ниобия различными элементами может изменить указанные значения и тем самым уменьшить степень его водородного охрупчивания.  [c.74]

В отличие от результатов, полученных в процессе легирования поверхности железа, при проведении экспериментов на образцах из стали ШХ15 в области воздействия лазерного излучения наблюдается образование трех явно выраженных зон. Одна из этих зон (наибольшая по объему) является твердым раствором легирующего элемента на основе железа. Затем расположены две ЗТВ закалки и отпуска. Глубина зоны легирования также достигает 300—400 мкм. Н.а характеристики обработанной поверхности большое влияние оказывает выбор легирующего элемента. Так, при легировании молибденом и титаном наблюдается значительно большее увеличение микротвердости в зоне лазерного воздействия, чем при легировании ниобием.  [c.29]

Изучение влияния фазового состава и отдельных легирующих элементов - хрома, воль4рама, ванадия, ниобия, титана, а также совместных добавок Сг и Мо,Сг и /,Сг иМЬ, Сг и V, Сг и Т на водородоустойчивость сталей при температуре до 600 и давлении до 800 атм проводилось, как правило, на опытных плавках. Стали термически обрабатывались по режимам, обеспечивающим наиболее термодинамически устойчивое состояние карбидной фазы при заданных температурах испытания.  [c.153]

Одним из этапов процесса обезуглероживания является диффузия углерода в феррите. Известно, что легирование феррита хромом резко замедляет процессы диффузии в нем элементов внедрения, в частности, углерода. Поэтому можно предположить, что повышение водородостойкости хромистых сталей происходит не только за счет наличия в них стабильных карбидов, но и вследствие влияния хрома, растворенного в феррите, на скорость диффузии углерода. Для проверки этого предооложения были поставлены специальные исследования и определено влияние отдельных легирующих элементов (вольфрама, ванадия, ниобия и титана) на длительную водородную стойкость стали с 0,16 -0,18% С и связь между фазовым составом, механическими свойствами и водородостойкостью сталей под давлением водорода 800 атм при температуре 600.  [c.157]


Смотреть страницы где упоминается термин Легирующие элементы ниобий : [c.208]    [c.107]    [c.14]    [c.12]    [c.19]    [c.34]    [c.73]    [c.79]    [c.50]    [c.50]    [c.177]   
Металлургия и материаловедение (1982) -- [ c.47 ]



ПОИСК



Легирующие элементы

Ниобий

Ниобит 558, XIV



© 2025 Mash-xxl.info Реклама на сайте