Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Легирующие элементы молибден

Легирующий элемент обычно обозначают первой буквой его названия. Но это условие не всегда приходится соблюдать. Например, три легирующих элемента молибден, марганец и медь имеют названия, начинающиеся на букву М. Поэтому буквой М обозначили молибден, а два остальных элемента обозначили буквами, входящими в их названия и не используемым для обозначения других металлов. Медь обозначают буквой Д, а марганец — буквой Г.  [c.166]

Обогащение легирующими элементами (молибденом и т. д.), которое наблюдается при небольщой перековке, приводит к образованию глубоких обезуглероженных участков (рис. 65).  [c.75]


Модуль упругости в-фазы больше чем у аустенита и поэтому ее присутствие уменьшает Af-эффект в точке Нееля. Легирующие элементы молибден, хром и никель, оказывая одинаковое влияние на стабилизацию т->-е-превращения, по разному влияют на ДЯ-эффект молибден увеличивает аномалию модуля упругости, хром и никель уменьшают ее [1].  [c.90]

Сплавы железа с хромом являются основой коррозионностойких сталей, которые по составу делят на хромистые (Fe—Сг), хромоникелевые (Fe—Сг—Ni) и хромоникель-марганцевые (Fe—Сг—Ni—Мп) и хромомарганцевые (Fe— Сг —Мп). Кроме основных перечисленных компонентов, в эти стали могут входить дополнительные легирующие элементы молибден, медь, кремний, титан, ниобий и др., вводимые главным образом, для повышения их коррозионной стойкости. Ниже приведены табл. 10 и 11, в которых указаны классы нержавеющих сталей, характерные марки и основные области их применения.  [c.142]

При нагревании чугуна до 450 его прочность практически не изменяется. При температурах выше 450 прочность чугуна резко понижается и при 600 уменьшается на 50э/о. Легирующие элементы (молибден, хром и никель) несколько улучшают прочность чугуна, которая начинает падать лишь при температурах выше 500°. Для снижения температуры валков тонколистовых двухвалковых станов применяют обдувку бочек валков сжатым воздухом. Следует отметить, что у тонколистовых двухвалковых станов часты случаи поломки валков после простоя стана из-за возникающих внутренних напряжений, связанных с различным расширением белого и серого чугуна и переходной зоны. Для устранения внутренних напряжений в валках, вызываемых повторными нагревами и охлаждениями (особенно кратковременными), в течение некоторого времени после простоев следует производить прокат с уменьшенными обжатиями. С этой же целью рекомендуют изготовлять полые валки с внутренним отвер-  [c.245]

Молибдене значительной степени влияет на свойства сталей, упрочняя ферритную фазу. Его эффективность понижается с увеличением суммарного содержания легирующих элементов. Молибден устраняет отпускную хрупкость стали. Оптимальное его содержание в конструкционных сталях находится в пределах 0,20—0,45%, а дальнейшее увеличение может привести к охрупчиванию стали [21, 65].  [c.17]

Легирующие элементы замедляют процесс распада мартенсита. Некоторые элементы, такие как никель или марганец, влияют незначительно, тогда как большинство (хром, молибден, кремний и др.) — весьма заметно.  [c.358]

Каждый легирующий элемент обозначается буквой Н — никель X — хром К — кобальт М — молибден Г — марганец Д — медь Р — бор Б — ниобий Ц — цирконий С — кремний П — фосфор Ч — редкоземельные металлы В — вольфрам Т — титан А — азот Ф — ванадий Ю — алюминий.  [c.363]


Улучшаемые стали содержат 0,3—0,4%С и разное количество легирующих элементов (хром, никель, молибден, вольфрам, марганец, кремний) в сумме не более 3—5%, и часто около 0,1% измельчителей зерна (ванадий, титан, ниобий, цирконий).  [c.383]

Буквенные обозначения легирующих элементов Р — бор, Ю — алюминий, С — кремний, Т — титан, Ф— ванадий, X — хром, Г — марта нец, Н — никель, М — молибден,  [c.68]

Обозначения марок стали по указанному ГОСТу построены следующим образом. Первые две цифры указывают содержание углерода в сотых долях процента. Легирующие элементы обозначены прописными русскими буквами Р — бор, Ю— алюминий, С — кремний, Т — титан, Ф — ванадий, X — хром, Г — марганец, Н — никель, М — молибден, В — вольфрам. Цифры после букв указывают процентное содержание легирующего элемента в целых единицах. Отсутствие цифр означает, что сталь содержит до 1,5% этого элемента. Буква А в конце марки обозначает высококачественную сталь . Особо высококачественная сталь обозначается буквой Ш, которая ставится через тире в конце марки.  [c.329]

Влияние легирующих элементов Высокая жаропрочность стали достигается путем легирования ее хромом, никелем, молибденом, вольфрамом, ниобием, ванадием, ко()альтом, титаном, алюминием и другими элементами.  [c.48]

Его добавляют в качестве легирующего элемента к специальным сталям, содержащим хром и молибден и подвергающимся азотированию.  [c.68]

На рис. 41 приведены данные о влиянии легирующих элементов на временное сопротивление ниобия при кратковременных испытаниях на растяжение при 1095°С. К числу эффективных упрочнителей ниобия (см. рис. 41) относятся хром и алюминий. Ванадий, цирконий, гафний, молибден и вольфрам эффективно упрочняют ниобий при введении в количествах 5 - 20% (по массе), а титан и тантал практически не упрочняют его.  [c.89]

Введение малых количеств (до 1%) многих легирующих зле-ментов приводит к понижению твердости, так как эти элементы являются раскислителями. Однако при одном и том же содержании легирующих элементов твердость молибденовых сплавов будет тем выше, чем меньше растворимость легирующих элементов в молибдене. Наибольшее повышение твердости дает легирование молибдена бором и кремнием. В меньшей мере повышает твердость молибдена никель, кобальт, железо, алюминий, хром, цирконий. Не-  [c.91]

В составы титановых сплавов, кроме алюминия, дополнительно вводят молибден, ванадий, цирконий, хром, кремний, олово, ниобий и железо. Эти легирующие элементы, а также попадающие примеси изменяют температуру полиморфного превращения титана.  [c.298]

Согласно ГОСТ 4543—71 в обозначении марок конструкционной легированной стали первые две цифры указывают среднее содержание углерода в сотых долях процента, буквы за цифрами означают Р — бор, Ю — алюминий, С — кремний, Т — титан, Ф — ванадий, X — хром, Г — марганец, Н — никель, М — молибден, В — вольфрам. Цифры после буквы указывают примерное процентное содержание легирующего элемента в целых единицах отсутствие цифр означает, что в стали содержится до  [c.49]

В исходном состоянии алитированный слой состоит из явно обозначенных двух зон (рис. 1). Первая зона, примыкающая к поверхности (на 1-м и последующих рисунках показана только часть этой зоны), состоит из крупных кристаллов. Во второй зоне, примыкающей к основному металлу, видны мелкодисперсные включения. Из химической топографии этого слоя видно, что зоны алитированного слоя сильно различаются между собой по химическому составу. Содержание алюминия в первой зоне слоя составляет 30%, что отвечает интерметаллидному соединению (N1, СО) А1, в котором в небольшом количестве растворены другие легирующие элементы. Вторая зона алитированного слоя сильно пересыщена тугоплавкими элементами хромом, молибденом, вольфрамом и титаном (последние три элемента на рисунке не показаны). Общая толщина алитированного слоя в исходном состоянии 30 мк.  [c.166]

Повышенная концентрация хрома найдена в области карбидной прослойки и в диффузионной зоне вблизи основного материала (рис. 2). Отличительной особенностью покрытия является низкое содержание во внешней зоне легирующих элементов сплава, таких как титан, ванадий, вольфрам, молибден.  [c.174]

Большое влияние на коррозионное растрескивание в кислотах оказывает состав сплавов (легирующие элементы и примеси). Фактических данных по этому вопросу еще мало, но, по-видимому, закономерности, выявленные при изучении коррозионного растрескивания титановых сплавов в растворах галогенидов, остаются,—наиболее опасными являются алюминий и газовые примеси, а увеличению стойкости к растрескиванию способствуют /3-стабилизирующие элементы (особенно изоморфные-ванадий и молибден), а также пассивирующие—палладий и никель.  [c.51]


Присутствие бора в переходной зоне, обогащенной углеродом, и другие факторы приводят к значительному росту зерна в этой зоне. Карбидообразующие элементы (хром, вольфрам, молибден) в значительной мере устраняют это явление. Однако присутствие этих элементов (а также ванадия) способствует сглаживанию зубчатого контура в нижней части слоя, что ухудшает сцепление. Легирующие элементы, сужающие -у-область (хром, титан, ванадий), препятствуют диффузии бора и существенно уменьшают глубину борированного слоя.  [c.42]

В процессе борирования происходит перераспределение легирующих элементов между слоем и основным металлом. Углерод, хром, вольфрам и молибден диффундируют из слоя в основной металл, а никель, марганец и кремний обогащают борированный слой, мигрируя из основного металла к слою. Встречный поток атомов кремния и углерода приводит к обогащению ими переходной зоны от боридов к металлу.  [c.43]

Проблема легирования конструкционных сталей поэтому связана с повышением глубины закалки и глубины прорабатываемости сечения, т. е. с повышением устойчивости переохлажденного аустенита. Наибольшую устойчивость переохлажденному аустениту придают легирующие элементы молибден, марганец,. хром и никель. Поэтому и для увеличения глубины закалки наиболее эффективно применение указанных элементов. Для повышения прокаливаемости конструкционных сталей важно увеличение устойчивости переохлажденного аустенита на всем температурном интервале перлитно-трооститного распада (как в первой ступени перлитного распада, так и во второй ступени распада с образованием игольчатого троостита). С этой точки зрения имеет существенное значение комбинация энергичных карбидообразующих элементов, увеличивающих устойчивость аустенита (хрома, молибдена), с никелем и марганцем [41]. Хром, молибден и другие сильные карбидообразующие элементы, повышая критическую точку повышают и температуру А максимума  [c.67]

Жаропрочные стали и сплавы обладают высокими механическими свойствами при повышенных температурах и способностью сохранять их в данных условиях в течение длительного времени. Для придания отих свойств сталям н сплавам их обычно легируют элементами-упрочнителями, молибденом и вольфрамом (до 7% каждого). Важной легирующей присадкой, вводимой в пекоторые стали п сплавы, является бор. В ряде случаев к этим металлам предъявляется требование и высокой жаростойкости.  [c.281]

Для легированных сталей применяют обозначения Н — никель, Г — марганец, С - кремний, Ю — алюминий, X — хром, М — молибден, В — вольфрам, Д — медь, Т — титан, Ф — ванадий. Буква А в конце обозначения означает высококачественную сталь, Ш — особовысококачественную. Цифра, стоящая справа от буквы, указывает процентное содержание легирующего элемента если содержание этого элемента не превышает 1,5%, цифра в обозначении не указывается.  [c.127]

Все легирующие элементы уменьшают склонность аустенит-ного зерна к росту. Исключение составляют марганец и бор, которые способствуют росту зерна. Остальные элементы, измельчающие зерно, оказывают различное влияние никель, кобальт, кремний, медь (элементы, не образующие карбидов) относительно слабо влияют на рост зерна хром, молибден, вольфрам, ванадир , титан сильно измельчают зерно (элементы перечислены в порядке роста силы их действия). Это различие является прямым следствием различной устойчивости карбидов (и нитридов) этих элементов. Избыточные карбиды, не растворенные в аустените, препятствуют росту аустенитного зерна (см. теорию барьеров, гл. X, п. 2). Поэтому сталь при наличии хотя бы небольшого количества нерастворимых карбидов сохраняет мелкозернистое строение до весьма высоких температур нагрева.  [c.358]

Легирование другими элементами хромистой стали также повышает прокаливаемость. Для сечений диаметром 20—40 мм, кроме стали 40ХР, можно применять стали других марок из И1 группы. Стали этой группы дополнительно легированы марганцем, молибденом, кремнием, титаном. Все перечисленные элементы углубляют прокаливаемость и все, кроме молибдена, уменьшают запас вязкости. В этой группе выделяется по вязкости сталь ЗОХМ. Хотя прокаливаемость у нее не на много выше, чем у стали 40Х, но порог хладноломкости ниже кроме того, сталь ЗОХМ нечувствительна (как и другие молибденовые стали) к отпускной хрупкости II рода.  [c.386]

Коррозионная стойкость хромониксльмолибденомсдистых сталей в некоторых агрессивных средах, в особенности в растворах серной кислоты средних концентраций при повышенной температуре, вплоть до 80" С, довольно высока. Влияние легирующих элементов иа коррозионную стойкость этих сталей в серной кислоте сказывается различно, в зависимости от концентрации и температуры среды. Хром повышает коррозионную стойкость в 5—30%-ной серной кислоте при температуре 80 С. Никель и медь повышают коррозионную стойкост1з в 5—60%-но( 1 серной кислоте и особенно в 40—60%-ной при 80° С и в 5— 50%-ной лри температуре до 80° С. Молибден увеличивает стойкость стали в 5—70 /()-пой кислоте при 80° С и в 5—507о-ной при температуре кипения.  [c.230]

Основными легируюихими элементами конструкционных сталей являются хром, никель, кремний и марганец. Вольфрам, молибден, вапмдий, титан, бор и другие легирующие элементы вводят в сталь  [c.254]

Для достижения высокой прокалнваемости сталь чащ,е легируют как дешевыми элементами — марганцем, хромом и бором, так и более дорогими — никелем и молибденом. Однако следует иметь в виду, что по достижении необходимой для данного сечения про-каливаемости дальнейшее увеличение в стали легирующих элементов может не улучшить, а, напротив, ухудшить механические, техноло гические (обработку резанием, свариваемость п т. д.) Boii TBa стали. Так, увеличение содержания в стали хрома или марганца до 1,0 % практически не влияет на порог хладноломкости. Однако при больших их концентрациях порог хладноломкости повышается, В связи с этим содержание легирующих элементов должно быть минимальным, обеспечивающим необходимую для данного сечения и условий охлаждения сквозную прокаливаемость.  [c.255]


При дальнейшем медленном охлаждении непрерывные твердые растворы этих двойных систем в определенном интервале концентраций образуют химические соединения FeNi3 РеСо, РеСг и FeV. Марганец, вольфрам, молибден, титан, ниобий, алюминий и цирконий образуют с железом твердые растворы замещения ограниченной растворимости. Причем, если количество введенных элементов превышает их предел растворимости с железом, то легирующие элементы образуют с железом химические соединения. На рис. 22 показана диаграмма состояния Fe - W. Тип диаграммы характерен для систем Fe - А1 (рис. 23), Fe - Si, Fe - Mo, Fe - Ti, Fe - Та и Fe - Be.  [c.45]

В марках нержавеющих высоколегированных сталей по ГОСТ 5632—72 химические элементы обозначаются следующими буквами А — азот, В — вольфрам, Д — медь, М — молибден, Р—бор, Т — титан, Ю — алюминий, X—хром, Б — ннобнй, Г — марганец, Е — селен, Н — никель, С — кремний, Ф — ванадий, К — кобальт, Ц — цирконий. Цифры, стоящие в наименовании марки после букв, указывают, так же как и в наименовании марок конструкционных сталей, процентное содержание легирующего элемента в целых едишщах. Содержание элемента, присутствующего в стали в малых количествах, цифрами не обозначается. Цифра перед буквенным обозначением указывает на среднее или при отсутствии нижнего предела на максимальное содержание углерода в стали в сотых долях процента. Наименование марки литейной стали заканчивается буквой Л.  [c.49]

Влияние легирующих элементов на жаропрочность. Высокая жаропрочность стали достигается путем легирования ее хромом, никелем, молибденом, вольфрамом, ниобием, ванадием, кобальтом, титаном, азюминием. По мере увеличения в сплаве числа легирующих элементов и повышения их  [c.101]

Легированной называется сталь с присадками различных химических элементов, придаюш,их стали повышенные механические и другие свойства жаростойкости, коррозионной стойкости. В качестве легирующих элементов чаще всего применяются хром (X), никель (Н), вольфрам (В), ванадий (Ф), молибден (М).  [c.240]

Замедляющее действие окислов на диффузию наблюдалось неоднократно. Смолуховский [18] исследовал влияние молибдена и вольфрама на коэффициент диффузии углерода в у-Ее. Оказалось, что вольфрам в два раза сильнее уменьшает коэффициент диффузии, чем молибден. Примесь углерода увеличивает коэффициент диффузии в 2—3 раза. Блантер [19], также изучавший влияние легирующих элементов на диффузию углерода в у-Ее, пришел к выводу, что примеси, не образующие стойких карбидов, уменьшают Е, незначительно уменьшают а в некоторых случаях  [c.21]

Существенные изменения происходят в поверхностном слое лопатки II ступени после испытания в течение 900 часов. Со стороны корыта в горячей зоне обедненный слой достигает 40— 50 мк (рис. 4), а со стороны спинки 15—20 мк. Распределение элементов в поверхностном слое лопатки показывает, что белая зона обеднена легирующими элементами (хромом до 3%, молибденом до 2.5%). На неалитированных лопатках II ступени с уве-  [c.168]

Основными структурными составляющими двухстадийного комплексного диффузионного покрытия являются фазы p-NiAl и -(N1, Сг)зА1. Между параметрами решеток основных фаз никелевых сплавов и подслоя нихрома существует положительное размерное несоответствие. В наружной зоне покрытий концентрация легирующих элементов сплавов, таких как титан, ванадий, молибден, значительно ниже, чем при одностадийном формировании защитных покрытий.  [c.243]

Основным легирующим элементом в титановых сплавах является алюминий. За редким исключением, он присутствует во всех сплавах на основе титана. Поэтому значение системы Т1 —А1 для титановых сплавов можно сравнить со значением системы Ее —С для сталей. Следующими по важности и распространенности легирующими элементами являются ванадий и молибден, образующие с 0-фэзой титана непрерывный ряд твердых растворов. Применяют легирование промышленных сплавов Сг, Мп, Ее, Си, 8п, 2г, W. Для повышения стойкости титана в сильных коррозионных средах применяют "катодное" легирование в виде небольших добавок палладия и платины. Из неметаллов наиболее важное значение имеет ограниченное легирование кремнием, кислородом, углеродом, бором.  [c.11]

Травйтель 17 [100 мл уксусной кислоты добавка бензидина]. Этот раствор опробовали Глузанов и Криволави [17]. Он позволяет по окраске определять хром в стальных и чугунных образцах, не оказывая влияния на марганец, никель, кобальт, вольфрам, ванадий, молибден, медь, титан и кремний. При обычной технике получения отпечатков хром придает через 10—30 с отпечатку темноватый голубой оттенок. При этом другие легирующие элементы в стали лишь едва растравливаются.  [c.107]

Марганец, хром, вольфрам, молибден и кремний имеют техническое значение в основном как легирующие элементы. Жаропрочные сплавы на никельхромовой основе и сплавы вольфрама в этом отношении составляют исключение. Способы травления этих металлов имеют не очень большое практическое значение.  [c.158]

Ранее уже упоминался один из эффектов влияния легирующих элементов матрицы на взаимодействие с волокном. Он связан с оттеснением алюминия фронтом растущего диборида титана в матрице из сплава Ti-8Al-lMo-lV (рис. 1). Для проведения полного термодинамического анализа этого эффекта имеющихся данных недостаточно, однако из общих соображений можно предположить, что только дибориды циркония и гафния немного стабильнее ИВг- Дибориды элементов пятой группы периодической системы, видимо, менее стабильны, а дибориды элементов шестой группы еще менее стабильны. Действительно, энтальпия образования для диборидов элементов четвертой группы составляет 293—335 кДж/моль и уменьшается до 84—126 кДж/моль для элементов шестой группы —хрома и молибдена. Диборид алюминия также, по-видимому, значительно менее стабилен, чем диборид титана. Исходя из соображений, рассмотренных в работе Руди [36], можно заключить, что элементы, образующие нестабильные дибориды, будут вытесняться из диборидной фазы. Примером могут служить алюминий и молибден. На рис. 17 показана микроструктура диффузионной зоны в материале Ti-ЗОМо — В после выдержки при 1033 К в течение 100 ч. Объясняя строение зоны взаимодействия, Кляйн и сотр. [20] показали, что вытеснение молибдена из диборида титана приводит к появлению зоны В на внешней поверхности диборида титана (Л). При подсчете константы скорости реакции в работе [20] была использована общая толщина зоны взаимодействия, куда были включены слои А и В.  [c.115]

Цирконий вводят в белый чугун при получении ковкого чугуна (ЛЯ того, чтобы при обработке его в жидком состоянии получить )Олее высокие механические свойства за счет образования первич 1ЫХ чешуек графита в процессе затвердевания. При содержании в )елом чугуне до 0,09% цирконий аналогично титану связан прей лущественно в нитридах. Обработка жидкого чугуна циркониевым 10Дификатором усиливает влияние таких легирующих элементов, <ак хром, молибден и ванадий.  [c.63]


Смотреть страницы где упоминается термин Легирующие элементы молибден : [c.25]    [c.205]    [c.28]    [c.160]    [c.24]    [c.126]    [c.133]    [c.80]    [c.47]   
Металлургия и материаловедение (1982) -- [ c.45 ]



ПОИСК



Легирующие элементы

Молибден

Молибденит



© 2025 Mash-xxl.info Реклама на сайте