Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процессы Проходы ДВС через резонанс

При расчете конструкций, находящихся под действием периодически изменяющихся возмущающих сил, основной задачей в большинстве случаев является так называемая отстройка от резонанса, т. е. обеспечение достаточного различия между частотой со собственных колебаний и частотой ср возмущающей нагрузки. Обычно исходят из требований, чтобы ср 0,7со. В некоторых машинах допускают ср 1,Зсо, т. е. машины в процессе разгона проходят через резонанс.  [c.534]


Если размещение машины и трубопроводов позволяет, надо стремиться к жесткому фундаменту, имеющему дорезонансный режим колебаний, так как колебательные процессы здесь проще обозримы, нет явлений прохода через резонанс и надежно обеспечивается неизменность положения опор машины при общих незначительных вибрациях верхней плиты. Особенно выгоден дорезонансный режим, когда наряду с рабочим числом оборотов 3000 об/лын имеется также меньшее число оборотов (например, турбина имеет 3000 об/мин, а генератор 1500 об мин), так как  [c.247]

Условия применимости и оценка погрешности метода усреднения для систем, которые в процессе эволюции проходят через резонансы. Докл. АН СССР, 1965, 161, №1, с. 9-12.  [c.267]

Система, состоящая из турбоагрегата и его фундамента, проектируется так, чтобы ее критические частоты не были близки к половинной частоте вращения (иначе легко будет вызываться низкочастотная вибрация). Тем не менее, в процессе разворота турбоагрегат проходит через ряд критических частот. Если соответствующая форма небаланса не ликвидирована, то при переходе через резонанс возникает интенсивная вибрация оборотной частоты.  [c.523]

Процесс рассеяния при резонансе можно описать с помощью волновых пакетов, если последние в основном состоят из волн, частоты которых лежат в области резонанса. Волновой пакет проходит через рассеиватель по существу со скоростью света и частично рассеивается в обычную сферическую волну, которая сразу же уходит от рассеивателя. В то же время значительная часть энергии задерживается в рассеивателе и его окрестности и уходит от него значительно медленнее. Поэтому рассеиватель излучает энергию еще в течение длительного времени после того, как прошла возбуждающая волна, и он остается излучателем в течение характерного времени жизни т = 1/Г. В сечении рассеяния учитывается все рассеянное излучение, независимо от того, задержано оно рассеивателем или нет. Поэтому временный захват излучения и последующее его испускание приводят к увеличению сечения рассеяния. И максимум сечения, и временная задержка характерны для резонансного процесса. Более подробное математическое описание явления временной задержки можно найти в гл. 19.  [c.70]

В сложных молекулах и в твердых телах могут происходить разнообразные релаксационные процессы. Возникает вопрос о пригодности простой двухуровневой схемы для описания воздействия этих систем на световые импульсы, находящиеся в резонансе с молекулярным переходом, или о необходимости применения многоуровневой модели для понимания такого воздействия. Приведем пример. В качестве насыщаемых поглотителей очень часто используются молекулы органических красителей, в которых, согласно принципу Франка — Кондона, наиболее эффективное возбуждение происходит при переходе не в бесколебательное возбужденное электронное состояние, а на некоторый высокий колебательный уровень этого электронного состояния. По этой причине молекула отдает при релаксации как электронную, так и колебательную энергию и проходит при этом с большей вероятностью релаксационный путь, идущий через бесколебательное состояние возбужденного электронного уровня (фиг. 60). В работе [3.21-8] исследовано взаимодействие таких молекул со световыми импульсами при различных соотношениях между длиной импульса и отдельными временами релаксации. Было показано, что воздействие этих молекул на световые импульсы может  [c.430]


При пуске машины и ее остановке в процессе испытания- образец неоднократно проходит через резонанс. Устройство позволяет пройти критическое число циклов без возрастания напряжений в образце. Для этого образец 1 (рис. 82) нагружают до заданной величины изгиба при медленном вращении при л<п р гирями 2, которые подвешены к захватам 3 образца 1 с помощью двух скоб 4. После набора рабочего числа оборотов (/г>Якр) дополнительные опоры 5 и 6 выключают. Разработана машина с электромагнитным силовозбуждением для испытания на усталость при консольном круговом изгибе, машина для испытаний при изгибе в условиях резонанса с электромагнитным нагружением, а также с таким же нагружением для испытаний при плоском изгибе и изгибе с вращенн-ем и на круговой изгиб с приводом вращения магнита вокруг камеры машины . Имеются приспособления для резонансных усталостных испытаний образцов с резьбовыми головками. Разработана методика определения массы нагружающей системы машин типа НУ [167].  [c.164]

Если частота вынуждающей силы, связанная, например, с числом оборотов машины, которая будет установлена на проектируемой конструкции, предопределена и не подлежит регулированию проектировщиком конструкции, то величину параметра а, гарантирующую невозникновение резонанса, можно обеспечить соответствующим значением Ыс. Величина Шс зависит от жесткости конструкции и колеблющейся массы. Всегда можно за счет выбора надлежащей жесткости с добиться того, чтобы Шс было достаточно большим для обеспечения необходимого достаточно малого значения а. Однако в тех случаях, когда конструкция в целях обеспечения большого сос получается недопустимо тяжелой, может быть поставлен вопрос о выборе агрегата с меньшим, чем Шс, значением (о или о допустимости работы конструкции в условиях установившегося режима при величине а, превышаюшей ее значение, характерное для области резонанса. В таком случае в процессе пуска и выключения машины конструкция проходит через резонанс. Однако продолжительность пребывания конструкции в таком состоянии невелика, и могут быть приняты специальные меры для обеспечения надежности работы конструкции в эти периоды переходного режима машины.  [c.113]

Прохождение системы через резонанс. В ряде случаев отношение частот вынуждающей силы и свободных колебаний оказывается больше единицы. Такие случаи встречаются, например, если на конструкции установлена машина, имеющая неуравновешенную массу с очень большим числом оборотов в минуту. Может оказаться затруднительным добиться того, чтобы сос значительно превосходило ш и, таким образом, система работала бы в дорезонансной зоне при р, ненамного большем единицы. Для этого пришлось бы делать конструкцию очень жесткой, и следовательно, тяжелой. Приходится идти на то, чтобы удалиться от резонанса, т. е. от близости ы/шс к единице, за счет создания конструкции с Мс < оз. В таких случаях в процессе пуска магпины, когда оз увеличивается от нуля, или в процессе останова машины, когда м умеиыипется до нуля, система проходит через резонанс это состояние оказыв.дотся самым тя-  [c.130]

Систематическое изложение результатов этого цикла исследований и обзор работ, выполненных до 1964 г., содержатся в книге В. О. Кононенко [21]. При продолжении нсследова-нпн к. В. Фроловым и М. Ф. Диментбергом был изучен эффект Зоммерфельда в системе со случаГжо изменяющимися параметрами [J5] (J966). Показано, в частности, что при случайном изменении собственной частоты возможен проход через резонанс без подпода энергии к основному двигателю, а амплитуды колебаний в этом случае могут быть больше, чем в детерминированной системе. Экспериментальные исследования подтвердили теоретические результаты, а также позволили сделать вывод, что случайные изменения параметров ведут к срыву резонансных колебаний. Анализу переходных процессов в случае нелинейной колебательной системы посвящена работа Л. Пуста [27, 46J.  [c.212]

В гл. 6 мы подчеркивали, что параметрическое преобразование частоты вверх является частным случаем процесса генерации излучения суммарной частоты. Подобно этому, параметрические усилители и генераторы являются частными случаями генераторов разностной частоты. Из соотношений Мэнли — Роу (разд. 2.14) мы знаем, что в процессе генерации разностной частоты фотон наибольшей частоты распадается на два фотона с меньшими частотами энергия, черпаемая из пучка с большей частотой, распределяется между двумя пучками с меньишми частотами. Следовательно, этот процесс можно использовать для усиления волн слабый сигнал заставляют взаимодействовать с мощной волной накачки, имеющей более высокую частоту, тогда обе волны — возникающая в процессе взаимодействия волна разностной частоты (известная под названием холостой волны ) и первоначальный сигнал — усиливаются. Если холостая волна и усиленный сигнал снова проходят, имея нужную фазу, через тот же самый нелинейный кристалл, то обе волчы снова усиливаются. Более того, даже если только одна из волн повторно и в нужной фазе пропускается через кристалл, то в результате снова получается усиление обеих волн. Таким образом, усилитель может быть превращен в генератор путем введения соответствующей обратной связи (т. е. резонатора) либо для обеих волн, либо только для одной из них. Если усиление за один проход превысит потери за тот же проход, самовозбуждение генератора может возникнуть с затравкой из шумов. Если и для сигнальной, и для холостой волн имеются резонаторы, то порог генерации, естественно, ниже, нежели в том случае, когда резонанс существует только для одной из них. Однако по другим соображениям (как показано в разд. 7.5) этот так называемый двухрезонаторный вариант параметрического генератора может быть менее предпочтительным.  [c.189]



Смотреть страницы где упоминается термин Процессы Проходы ДВС через резонанс : [c.131]    [c.449]    [c.350]   
Вибрации в технике Справочник Том 3 (1980) -- [ c.344 , c.345 ]



ПОИСК



Резонанс



© 2025 Mash-xxl.info Реклама на сайте