Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциал вариация) функционала

Как в дифференциальном исчислении дифференциал функции представляет собой линейную по отношению к приращению аргумента Да часть приращения функции, так и в вариационном исчислении вариация функционала 62 представляет собой линейную по отношению к вариации функции бу часть функционала.  [c.190]

Аналогично понятию второго дифференциала функции в вариационном исчислении вводят понятие второй вариации функционала. Для простоты записи в дальнейшем ограничимся случаем, когда функционал зависит только от функции у (х) и ее первых двух производных. Тогда вторая вариация функционала определяется выражением  [c.305]


Дифференциал 6f, т. е. главную линейную часть приращения функционала F(u), вызванного вариацией би, называют вариацией функционала F u).  [c.15]

На самом деле как понятие дифференциала в дифференциальном исчислении, так и понятие вариации функционала не ограничивается применением к исследованию задач на максимум и минимум определенных интегралов, а много шире, что требует этой оговорки.  [c.244]

Вариация функционала Полный дифференциал функции многих переменных  [c.576]

В самом деле, для дифференциала т, используя формулу для вариации функционала с подвижным концом ), получим  [c.22]

Полный дифференциал любой функции состояния согласно выводам 2 должен содержать хотя бы один частный дифференциал внутренней переменной, например температуры. Выражение (5.7) не удовлетворяет этому требованию, следовательно, оно не является полным. дифференциалом (нарушено условие (4.8)), что означает зависимость работы в термодинамике от способа изменения переменных в процессе ее совершения, т. е. работа — функция процесса, а не состояния. Это же следует и непосредственно из определения (5.2). Действительно, термическое уравнение состояния, например (2.1), указывает на зависимость X,- не только от у/, но и от Т. Поэтому при разных температурах под интегралом в (5.2) стоят по существу разные функции Х(у), т. е. работа W — функционал. (Этим. объясняется знак вариации б, используемый часто для обозначения бесконечно малых и Q.)  [c.44]

Если функция у = х) достигает экстремума внутри заданного интервала значений аргумента х, дифференциал йу — 0. Аналогично, если функционал достигает экстремума, то его вариация равна нулю 62 = 0.  [c.190]

Выражение при / в формуле для вариации ЬР называют функциональной или вариационной производной в смысле Фреше и обозначают dF(f)ld[(x) (иногда пишут 8F/6f [60]). Таким образом, сильный дифференциал функционала / (/) может быть определен как результат применения к элементу б/6/ i линейного оператора dP(f)ldf(x), т. е.  [c.217]

Можно доказать, что если функционал Ф дифференцируем, то его дифференциал определен однозначно. Дифференциал функционала называют также его вариацией, а к называют вариацией кривой.  [c.53]

Дифференцирование вариационных функционалов. Нормирование пространства состояний позволяет при исследовании вариационных формулировок применять понятия производной и дифференциала. Дифференциал функционала энергии в нормированном пространстве (дифференциал Фреше) в вариационном исчислении называют вариацией. Производная функционала энергии (производное отображение) является дифференциальным оператором соответствующей краевой задачи. Этот оператор получают, преобразуя вариацию функционала методами вариационного исчисления (см гл. I). Производную функционала иногда называют его градиентом. Точкой стаинонарности функционала называется такое значение его аргумента, при котором его градиент равен нулю, т. е. соответствующие дифференциальные операторы обращаются в нуль.  [c.207]


Для любого значения imodx второй дифференциал функции Лагранжа по скорости является положительно определенной квадратичной формой и определяет скалярное произведение (,) на касательном пространстве Т- щМ. Пусть — ковариантная производная вектощото поля вдоль 7, согласованная с метрикой ( , + "п)- Вторая вариация функционала S в критической точке т является квадратичной формой на множестве гладких т-периодических векторных полей I вдоль у  [c.158]

Возможное перемещение точки, в отличие от действительного dUj, будем обозначать б /, где символ 6 носит название вариации и для него приняты те же правила, что и для оператора-дифференциала d. Следует лишь помнить, что эти правила не распространяются на аргументы Р,- функции и-,. Другими словами, вариация функции (в данном случае щ) есть изменение этой функции вследствие изменения вида самой функции при фиксированных координатах Xh точки Л/. То же самое можно сказать о вариациях деформаций бе у. Важную роль в теории упругости и в целом в МДТТ играют переменные величины, называемые функционалами. Будем говорить, что задан некоторый функционал  [c.121]


Смотреть страницы где упоминается термин Дифференциал вариация) функционала : [c.442]    [c.340]    [c.22]    [c.7]    [c.599]    [c.607]    [c.15]   
Основы теоретической механики (2000) -- [ c.599 ]



ПОИСК



Вариация

Вариация функционала

Дифференциал

Функционалы



© 2025 Mash-xxl.info Реклама на сайте