Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие положения и основные уравнения теорема

Исследование интегральных уравнений (7.8) и (7.9) удается провести, сочетая основные положения общей теории интегральных уравнений с упомянутыми выше свойствами гармонических функций и теоремами единственности краевых задач.  [c.100]

Одно из преимуществ, которое получается при использовании формулы, о которой идет речь, заключается в том, что она непосредственно приводит к общим уравнениям, в которых содержатся принципы или теоремы, известные под названием принципов сохранения живых сил, сохранения движения центра тяжести, сохранения моментов вращения, или принципа площадей, и принципа наименьшего действия. Однако все эти принципы следует рассматривать скорее как общие выводы из законов динамики, чем как первоначальные принципы этой науки, но так как при разрешении задач их зачастую все-таки принимают в качестве основных положений, то мы считаем необходимым здесь на них остановиться и указать, в чем они заключаются и каким авторам они обязаны своим происхождением, дабы не допустить существенного пробела в настоящем предварительном изложении принципов динамики.  [c.314]


Центроидами колеса и рейки являются окружность радиуса и прямая I—/, касательная к этой окружности. Согласно основной теореме зацепления [72], нормаль к сопряженным профилям должна проходить через полюс зацепления. Нормаль к эвольвентному профилю совпадает с касательной к основной окружности. Нормалью к эвольвентному профилю Р—Р, проходящей через полюс зацепления Р, может быть только прямая РЬ (рис. 8.3), занимающая постоянное положение в неподвижной плоскости. Так как рейка и связанный с ней профиль перемещаются поступательно, а общая нормаль к профилям зубцов колеса и рейки не изменяет своего положения в процессе зацепления, профилем зубца рейки может явиться только прямая уу, перпендикулярная РЬ. Из этого следует, что профиль зубца рейки, огибающий эвольвентный профиль, представляет прямую линию с углом а , определяемым из уравнения  [c.264]

Принцип Длламбера. Результат, полученный в предыдущем пункте, в какой-либо из трех своих эквивалентных форм носит название принципа Даламбера ) название принцип находит свое оправдание в характере интуитивной очевидности, которой обладает это положение механики. С чисто математической стороны этот принцип, по сравнению с постулатами и общими теоремами, уже ранее установленными, не дает чего-либо нового, так как по существу он сводится к номинальному истолкованию основных уравнений (8). Но с теоретической точки зрения и для исследования механических задач принцип Даламбера представляет значительный интерес, поскольку он позволяет свести постановку какого угодно динамического вопроса к статическому вопросу. Составление уравнений движения материальной системы для какой-либо динамической задачи при помощи принципа Даламбера сводится к составлению уравнений равновесия соответствующей статической задачи.  [c.267]

Основной мыслью, из которой исходил Лейбниц, было положение, что причина всегда количественно равна своему действию. Поэтому, как бы ни видоизменялись движения в природе, их обш ая итоговая мера должна быть неизменной, ведь движение имеет свою причину тоже в движении. Эту меру он назвал живой силой — раньше того, как была найдена математическая формула для ее выражения. Живая сила у Лейбница имела и другие названия сила движения , движуш ая сила , потенция . Принцип равенства причины и действия приводил Лейбница к принципу сохранения живых сил, или к принципу сохранения силы. Это не математическая теорема, а философское положение, высший постулат разума, без ноторо-ю мы должны были бы признать беспорядок, хаос во Вселенной. Когда это установлено в качестве общей непререкаемой истины, начинается специальное исследование как математически правильнее выразить меру движения, чтобы указанная высшая истина смогла быть выражена в виде уравнения, в левой части которого стояла бы функция от величин, характеризуюхцих движущееся тело, а справа постоянная.  [c.181]


Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]

Используем общие определения параграфа 2 применительно к векторному соленоидальному полю завихренности и. Тогда из общих свойств векторных полей на основании теоремы Стокса (1.8) следует, что циркуляция Г по любому замкнутому стягиваемому контуру равна алгебраической сумме интенсивностей к всех вихревых трубок, пересекающих поверхность, ограниченную этим контуром. Это справедливо и в частном случае вихревых трубок бесконечно малого поперечного сечения — вихревых нитей. Обратим внимание на то, что понятие вихревая нить и вихревая линия отличны. Вихревая нить — это особая линия в распределении поля завихренности, полностью определяемая значением интенсивности к. В свою очередь — вихревая линия — это линия, касательная к которой в каждый момент времени совпадает с направлением мгновенной оси вращения жидких элементов. Применительно к описанию вихревого движения термины вихревые линии и нити ввел Г. Гельмгольц в (135). Он сформулировал основные свойства интегралов гидродинамических уравнений второго класса (так были названы течения, содержащие отличную от нуля завихренность в отличие от полностью потенциальных течений, весьма детально к тому времени изученных). Сформулированные в виде трех положений, эти свойства в дальнейшем названы законами или теоремами Гельмгольца для в 1хревого движения. Более столетия они встречаются в различных интерпретациях практически во всех учебниках по механике жидкости. Приведем эти законы в формулировках Г. Гельмгольца  [c.34]



Смотреть страницы где упоминается термин Общие положения и основные уравнения теорема : [c.30]    [c.4]    [c.224]    [c.2]   
Смотреть главы в:

Вибрационная механика  -> Общие положения и основные уравнения теорема



ПОИСК



155—157, 241—242 — Основные положения

ОБЩИЕ ПОЛОЖЕНИЯ

Общее основное уравнение

Общие теоремы

Общие уравнения

Основные положения и уравнения

Основные теоремы

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте