Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения Эйлера-Пуассона и их обобщения

Для уравнений Эйлера-Пуассона (1.6), которые, при задании постоянной площадей, определяют динамику точки на сфере Пуассона в обобщенно-потенциальном поле (см. 1 гл. 4), известны несколько семейств периодических и асимптотических решений. Почти все эти решения, многие из  [c.91]

Громоздкие условия, приведенные в таблице 3.1, с геометрической точки зрения имеют простой смысл. Воспользовавшись аналогией с уравнением Эйлера-Пуассона, будем считать, что динамически несимметричное твердое тело движется в обобщенно потенциальном поле, т.е. 7 — некоторые позиционные переменные. Тогда условием существования соотношения (1.16) является симметрия потенциала и обобщенного потенциала системы (1.2) относительно вращений вокруг перпендикуляра к круговому сечению гирационного эллипсоида (ср. с 6 гл. 2).  [c.176]


B 7 гл. 5 приведено более общее семейство частных интегрируемых случаев на пучке скобок частными случаями которого являются случай Ковалевской уравнений Эйлера-Пуассона, случай Чаплыгина (I) уравнений Кирхгофа и случай Богоявленского (I) уравнений Пуанкаре-Жуковского, а также различные гиростатические обобщения.  [c.196]

Обобщенные уравнения Эйлера-Пуассона  [c.207]

Различные обобщения случаев интегрируемости уравнений Эйлера-Пуассона  [c.296]

Чаплыгин, Сергей Алексеевич (5.4.1869-8.10.1942) — русский математик и механик, один из основоположников современной гидроаэромеханики. Указал частный случай интегрируемости при нулевой постоянной площадей уравнений Эйлера-Пуассона, обобщив при этом более частное решение Д. П. Горячева, а также более частные решения, характеризуемые системой линейных инвариантных соотношений. Для уравнений Кирхгофа также нашел аналогичный случай частной интегрируемости и его обобщения, исследовал винтовые движения, дал геометрическую интерпретацию различных движений, в частности, для случая Клебша). Вывел уравнения движения тяжелого твердого тела в жидкости и более подробно исследовал случай плоского и осесимметричного движения.  [c.25]

При помощи (4.5) и (4.7) интегрируемость обобщенного волчка Ковалевской в случае Делоне может быть установлена и без использования интеграла Рг (4.4). Оказывается также, что полный набор интегралов, включающий Р, гг, 22, -Рз уже оказывается зависимым. Интересно заметить также, что в случае одного силового поля д = др = = 0) кубичный по моментам интеграл (4.6) имеет структуру, почти аналогичную частному интегралу Горячева-Чаплыгина для уравнений Эйлера-Пуассона (см. 5 гл. 2).  [c.210]

Замечание 8. При добавлении постоянного гиростатического момента вдоль оси динамической симметрии в (4.25) и (4.26) получаются случаи интегрируемости, соответствующие обобщенным случаям Яхьи и Сретенского в уравнениях Эйлера -Пуассона, интегралы для которых несложно получить из (4.23) при помощи процедуры поднятия, описанной в гл. 4.  [c.219]

Другие интересные физические обобщения на случай суперпозиции различных силовых полей рассмотрены в 4 гл. 3, 1, 4 гл. 4 (см. также [31, 21]). Известны также их обобщения на кватернионные уравнения Эйлера-Пуассона ( 4 гл. 3).  [c.296]

Эти девять кинематических уравнений (они называются обобщенными уравнениями Пуассона) вместе с тремя динамическими уравнениями Эйлера (14.60) составляют полную систему дифференциальных уравнений движения ИСЗ относительно центра масс. В этих уравнениях 1х> 1у, г и ц — известные постоянные величины, R и со — в общем случае известные функции времени, определяемые из кеплерова движения центра масс спутника, Q . Р > Yft (k=, 2, 3) —искомые функции времени. Не останавливаясь на методах решения этих уравнений (в общем виде они решаются только для частных случаев), заметим, что шесть первых интегралов нам известны —это равенства (14.56).  [c.339]



Смотреть страницы где упоминается термин Уравнения Эйлера-Пуассона и их обобщения : [c.207]    [c.296]    [c.533]    [c.240]    [c.440]    [c.534]   
Смотреть главы в:

Динамика твёрдого тела  -> Уравнения Эйлера-Пуассона и их обобщения



ПОИСК



Обобщения

Пуассон

Пуассона уравнение

Уравнение Эйлера

Уравнения Пуассона си. Пуассона уравнение

Уравнения Эйлера—Пуассона

Эйлер

Эйлера эйлеров

Эйлера—Пуассона



© 2025 Mash-xxl.info Реклама на сайте