Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ванадий — водород

Диаграммы состояния типа железо — цементит (с эвтектикой и эвтектоидом) системы циркония с серебром, бериллием, кобальтом, хромом, медью, железом, марганцем, молибденом, никелем, ванадием, вольфрамом, водородом.  [c.443]

Алюминий Ванадий. Висмут, . Водород.  [c.36]

При наличии нескольких беспорядочно расположенных в решетке изотопов или ядер, обладающих спином, рассеяние частично происходит на каждом ядре независимо (некогерентно). При некогерентном рассеянии закон сохранения импульсов не выполняется. Энергия нейтрона не зависит от угла рассеяния. Из естественных элементов почти целиком некогерентно рассеивают кристаллы ванадия и водорода [34]. Среди металлических элементов почти полное когерентное рассеяние дает алюминий [35].  [c.89]


При нагреве титан поглощает кислород, азот, водород и углерод, которые образуют с Ti а и Tip твердые растворы внедрения разной предельной концентрации, в отличие от нормальных легирующих элементов (ванадия, алюминия, олова и др.), образующих твердые растворы замещения.  [c.519]

Тугоплавкие металлы (титан, ванадий, хром и др.) имеют высокую химическую активность в расплавленном состоянии. Они активно взаимодействуют с кислородом,азотом, водородом и углеродом. Поэтому плавку этих металлов и их сплавов ведут в вакууме или в среде защитных газов.  [c.173]

Бор Ванадий (Г) Висмут (Т) Водород (4 К) и-Водород (4,2 К) (Т) 5,58 7,011 32,286 5000 0,8 3,245 26,529 — 139,42 30,973 0,170 (6) 18,24 4,09 7,0(3) [71 [14] [II] [7] [15]  [c.87]

Ванадий, ниобий и тантал устойчивы па воздухе при обычной температуре, при повышенной взаимодействуют с кислородом, галогенами, азотом, углеродом, водородом, со щелочами. Ванадий не стоек в соляной, серной, азотной,, плавиковой кислотах и в царской водке. Ниобий и особенно тантал стойки к действию соляной, серной и азотной кислот танталовые тигли применяют для плавки редкоземельных металлов.  [c.95]

При температурах до 300 С ванадий может поглотить до 157 см г водорода с образованием гидрида, который разлагается в вакууме при 900 °С. Азот также поглощается ванадием нитрид ванадия разлагается при температуре выше 2000 °С.  [c.96]

Рис. 47. Влияние водорода и температуры на равномерное удлинение ванадия Рис. 47. Влияние водорода и температуры на равномерное удлинение ванадия
За последнее десятилетие применение электричества получило особенно широкое распространение в химической промышленности для переработки бедных руд цветных металлов и получения ценных побочных продуктов. В массовом количестве стали производиться редкие металлы, алюминий, удобрения, хлор, щелочи, водород, кислород, пластические массы, резиновые изделия, синтетические материалы и т. п. При переработке нефти получаются такие синтетические материалы, как ацетатный шелк, целлофан и др. Для изготовления 1 т ацетатного шелка требуется до 20 тыс. квт-ч электроэнергии, т. е. такое же количество, как и для производства 1 т алюминия. Электролиз явился основой технологических способов порошковой металлургии (получение титана, ниобия, тантала, циркония, ванадия, урана).  [c.124]


В серной кислоте любых концентраций при комнатной температуре скорость коррозии не превосходит норм 1 балла, однако при увеличении продолжительности испытаний его стойкость в этой среде уменьшается (вероятно, вследствие насыщения металла водородом). Повышение температуры кислоты до 100° С приводит к увеличению скорости коррозии ванадия на два порядка.  [c.51]

В составе малоуглеродистой стали обычно присутствуют углерод, марганец, кремний, сера, фосфор, кислород, азот, водород, а также могут быть добавки легирующих элементов, используемых в качестве раскислителей хром, алюминий, бор, ванадий, титан, молибден. Содержание каждого из указанных элементов в малоуглеродистой стали составляет десятые либо сотые доли процента. Между тем, их влияние на склонность стали к хрупкости при понижении температуры может оказаться значительным, хотя удельный вес влияния каждого элемента определить весьма трудно. Поэтому исследователи рассматривают свойства чистых сплавов а-желе-за с регулируемыми добавками различных элементов [48], а промышленные стали оценивают с применением методов статистического анализа [49].  [c.39]

Установлено, что введенные в определенных количествах по отношению к углероду легирующие элементы (хром, ванадий, титан и др.), обеспечивающие образование устойчивых кар бидов, устраняют вредное влияние водорода.  [c.85]

Насыщение хромом позволяет значительно увеличить коррозионную стойкость железа и стали в азотной и уксусной кислотах, в среде перекиси водорода и в растворе хлористого натрия. Насыщение вольфрамом и молибденом сообщает коррозионную стойкость железу и стали в серной кислоте, насыщение марганцем увеличивает стойкость в среде перекиси водорода и хлористого натрия, а насыщение ниобием и ванадием способствует повышению коррозионной стойкости стали в серной кислоте.  [c.307]

В сталях всех марок присутствуют постоянные примеси. Некоторые примеси (марганец, кремний) необходимы в металле по условиям технологии выплавки стали, другие (вредные) примеси (сера, фосфор) не поддаются полному удалению. Постоянный характер носят также так называемые скрытые примеси (кислород, водород, азот), содержание которых мало. К специальным примесям относят легирующие добавки для придания стали определенных свойств (никель, молибден, ванадий, титан и др.), а также углерод, марганец, кремний. В марках легированных металлов и сплавов указывается наличие тех или иных элементов буквами русского алфавита (табл. 2, стр. 5—6).  [c.11]

Вакуумная дегазация 63 Вакуумно-дуговой переплав 64 Ванадий в стали 54 Висмут 52 Водород в стали 56  [c.253]

На механические свойства технически чистого (нелегированного, восстановленного кальцием) ковкого ванадия существенное влияние оказывает изменение содержания неметаллических элементов — кислорода, азота, водорода и углерода. Более высокое содержание этих примесей в металле, полученном восстановлением кальцием, приводит к увеличению почти вдвое предела прочности при растяжении по сравнению с иодидным ванадием в отожженном состоянии. Это видно из данных о прочности и твердости, приведенных в табл. 4 для нескольких плавок горячекатаного или холоднокатаного и затем отожженного или гомогенизированного ванадия. Если требуется ковкий металл, то общее содержание кислорода и азота ие должно превышать 0,25% однако для того, чтобы процесс обработки был выгодным с экономической точки зрения, содержание кислорода и азота должно быть ниже 0,15%.  [c.108]

Молибдек Натрий. Никель. Свинец. Рубидий Сера. . Селен. . Кремний Олово. Титан. Ванадий Цинк. . Водород Кислород Азот. .  [c.189]

Ванадий. Чистый ванадий (99,9%) — достаточно пластичный металл, обладающий хорошей технологичностью и свариваемостью. До 1550° С он имеет решетку объемноцентрированного куба. Предполагают, что выше 1550° С происходит аллотропическое превращение, однако данные о структуре второй аллотропической модификации не достоверны. Ванадий нарамагнитон, прп темпера туре 4,5° К переходит в сверхпроводящее состояние. При нагреве до 200—400° С ванадий поглощает водород, образуя гидрид, который в вакууме ари 400° С  [c.372]


Азот. . Актиний Ал юминий Америций Аргон Астатин Барий Бериллий Беркелий Бор. . Бром. . Ванадий Висмут. Водород Вольфрам Гадолиний Галлий Гафний. Гелий Германий. Гольмий Диспрозий Европий Железо Золото. Индий. Иридий. Иттербий Иттрий Йод. . . Кадмий Калифорний Калий Кальций Кислород Кобальт Кремний Криптон Ксенон Кюрий. Лантан Литий. Лютеций. Магний. Марганец Медь. Менделевий Молибден Мышьяк Натрий Неодим Неон. ,  [c.610]

Водород также растворяется в большинстве металлов. Металлы, способные растворять водород, можно разделить на две группы, К первой группе относятся металлы, не имеющие химических соединений с водородом (железо, никель, кобальт, медьидр.). Конторой группе относятся металлыд(титан, цирконий, ванадий, ниобий, тантал, паладий, редкоземельные элементы и др.), образующие с водородом химические соединения, которые называются гидридами. Водород очень вредная примесь, так как является причиной пор, микро- и макротрещин в шве и в зоне термического влияния.  [c.27]

Другим фактором, затрудняющим перемещение дислокаций, является легирование твердых тел примесями. Известно, что малые добавки примесных атомбв улучшают качество технических сплавов. Так, добавки ванадия, циркония, церия улучшают структуру и свойства стали, рений устраняет хрупкость вольфрама и молибдена. Это, как говорят, полезные примеси, но есть примеси п вредные, которые иногда даже в незначительных количествах делают, например, металлические изделия совсем непригодными для эксплуатации. Так, очистка меди от висмута, а титана — от водорода привела к тому, что исчезла хрупкость этих металлов. Олово, цинк, тантал, вольфрам, молибден, цирконий, очищенные от примесей до 10 —10" % их общего содержания, которые до очистки были хрупкими, стали вполне пластичными. Их можно ковать на глубоком холоде, раскатывать в тонкую фольгу при комнатной температуре.  [c.135]

Примееи внедрения повышают температуру перехода к хрупкости (рис. 46 и 47) водород оказывает влияние даже при содержании 0,001 %. Иодидный ванадий при содержании 0,015 % О, 0,0005 % N,  [c.97]

С хлором и другими галоидами ванадий в,1аимодействует неносредетвенно при нагреве до 150—200° С. При более высоких температурах (около 1000° С) с азотом, водородом, углеродом и кремнием он дает хрупкие соединения — нитрид, гидрид, силицид и карбид.  [c.492]

Защита поверхности первой стенки разрядной камеры, дивертора, коллекторных пластин от эрозионного разрушения потоками частиц из плазмы. Условия работы первой стенки в ТЯР первого поколения нейтронные (с энергией до 14 МэВ) и ионные (ионы водорода, дейтерия, трития с энергией до 20 КэВ, гелия с энергией до 3.5 МэВ) потоки плотностью 10 см -с , значительные тепловые нагрузки (20—50 Вт-см ), повышенная (300—600° С) температура с амплитудой термоцикли-рования до 150° С и скоростью 10° С-с , знакопеременные механические нагрузки. Приемлемыми материалами первой стенки ТЯР считают специальные нержавеющие стали и сплавы на основе никеля, молибдена, ванадия, ниобия.  [c.195]

Согласно приведенной выше схеме, выпадение, гидридов в подповерхностном слое в вершине трещины возможно лишь в случае абсорбции водорода катодными <астками в вершине треи ины, восходящей диффузии водорода в область максимальных напряжений (находящуюся в объемном напряженном состоянии) и образования пересыщенной водородом а-фазы и гидридов. Если в структуре металла имеется достаточное количество ч )азы, не склонной к коррозионному растрескиванию ( 3-фаза, стабилизированная ванадием, молибденом, ниобием или танталом), эта фаза является ак-кумулятором водорода, абсорбируемого катодными участками. В этом случае резко снижается возможность образования пересыщенной водородом а-фазы и выделения гидридов. Влияние различного количества ]3-фазы в структуре сплавов на склонность к коррозионному растрескиванию можно проиллюстрировать на одном и том же сплаве. Для этого использовали сплав, содержавший 6 % AI и 3,0 % V. В результате длительного отжига при 800°С в течение 100 ч практически весь ванадий перешел в а-твердый раствор, содержание /3-фазы, по данным рентгеноструктурного анализа, составило менее 0,3 %. Этот же сплав был подвергнут отжигу при 880°С в течение 1 ч с последующим охлаждением на воздухе. В последнем случае структура состояла из а-фазы и пласГинчатых выделений /3-фазы. Количество оста-  [c.71]

Необходимо отметить, что, подобно танталу и ниобию, ванадий и его сплавы в агресстаных восстановительных средах наводороживаются, в результате чего резко возрастает их хрупкость. Ванадий и его сплавы, которые оказались нестойкими в любой восстановительной кислоте, интенсивно наводороживаются. Химическим анализом при этом обнаруживается увеличение содержания водорода в сплаве в 2 раза и более. В структуре появляются гидриды (рис. 62,а), твердость сплава повышается (на Я860-120), образцы разрушаются хрупко при небольшом усилии, образуя блестящий кристаллический излом. Однако вакуумный отжиг (1100° С, 1—2 ч) (А  [c.66]

Однородность сплава Fe—Со—2 V в большой степени определяется его чистотой. Примеси ухудшают магнитные свойства сплава, нарушают кристаллическую структуру, вызывая неоднородность намагниченности. Показателем степени чистоты является коэрцитивная сила. Гоулд и Веннн [3S] получили для сплава Fe—Со—2V минимальные значения коэрцитивной силы Не путем применения очень чистых шихтовых материалов и тщательного переплава [42, 43]. Келлер и Гилман, [39] получили сплавы Fe—Со и Fe—Со—2V с минимальными значениями Не путем применения зонной плавки с последующим отжигом образцов в водороде. К существенному росту Не приводит наличие в сплавах остаточного углерода [41]. При содержании С>0,01% в сплавах Fe—Со—2V, как правило, присутствуют карбиды ванадия, отрицательно влияющие на магнитные свойства и однородность.  [c.233]

Исследование влияния, дополнительного легирования хромистых сталей. Широкое применение в отечественной и зарубежной практике получили стали с 3-6% хрома, дополнительно легированные молибденом, вольфрамом, ванадием, ниобием, титаном. Введение этих элементов повышает во— дородостойкость стали. Однако в настоящее время имеется еще недостаточное количество данных об их стойкости в сфеде водорода.  [c.156]


Одним из этапов процесса обезуглероживания является диффузия углерода в феррите. Известно, что легирование феррита хромом резко замедляет процессы диффузии в нем элементов внедрения, в частности, углерода. Поэтому можно предположить, что повышение водородостойкости хромистых сталей происходит не только за счет наличия в них стабильных карбидов, но и вследствие влияния хрома, растворенного в феррите, на скорость диффузии углерода. Для проверки этого предооложения были поставлены специальные исследования и определено влияние отдельных легирующих элементов (вольфрама, ванадия, ниобия и титана) на длительную водородную стойкость стали с 0,16 -0,18% С и связь между фазовым составом, механическими свойствами и водородостойкостью сталей под давлением водорода 800 атм при температуре 600.  [c.157]

В — при 530°С. И — реакторы из стали с высоким содержанием Сг, А1 и Si (сихромаль) при получении цианистого водорода из окиси углерода и аммиака в смеси с окисью алюминия, окисью цинка и пятиокисью ванадия в качестве катализатора.  [c.500]

Изотопы — атомные ядра с одним и тем же порядковым номером, но с разными атомными весами. В настоящее время установлено, что, за исключением фтора, натрия, алюминия, фосфора, скандия, ванадия, марганца, мышьяка, иттрия, ниобия, иода, цезия, лантана, празеодима, гольмия, тулия, тантала, золота, у всех остальных элементов наблюдается изотопия, т. е. каждый из элементов, за исключением указанных выше, состоит из атомов, имеющих ядра, различающиеся атомными весами. Например, водород состоит ил протия (атомный вес 1,0081), дейтерия (атомный вес 2,01417], хром состоит из атомов с атомными весами 50 (4,49%), Si (83,77%), 53(9,437о). 54(2,30%). К настоящему моменту установлено около 280 различных типов атомов, встречающихся в природе (при наличии 88 элементов и около 400 искусственно полученных типов атомных ядер) .  [c.339]

В специфических условиях синтеза аммиака (в атмосфере из смеси азота и водорода при температуре 500—600° С), а также для гидро-генизационных установок целесообразно применять хромистую сталь с 6—8 >/о Сг с небольшими добавками вольфрама ( 1%), молибдена ( 0,5 /о) или ванадия ( 0,Зо/о).  [c.493]

Как ВИДНО из таблицы, электролитический хром при йодид-ном рафинировании очищается от кремния, титана, меди, железа, азота, кислорода, водорода и углерода, в то время как содержание алюминия, свинца, висмута и кадмия остается после рафинирования практически на том же уровне. В рафинированном металле полностью отсутствовали марганец, никель, ванадий, молибден, вольфрам, мышьяк, сурьма и бор (в исходном металле эти примеси не определяли). Металлический хром после йодид-ного рафинирования пластичен в литом состоянии (удлинение при растяжении 9—16%).  [c.160]

Лумис и Карлсон [11] исследовали интервал температур перехода из хрупкого D вязкое состояние для нелегироваиного ванадия при механических испытания.ч на растяжение иодидного ванадия (0,024% углерода, 0,005% азота, <0,010"о кислорода, 0,001% водорода, <0,02% хрома, железа и кремния) и восстановленного кальцием ванадия (0,08% углерода, 0,029о азота, 0,015 о кислорода, 0,006 6 водорода, <0,02% хрома, железа и кремния) при температурах испытаний от 20 до —179°. Они сообщают, что температура перехода для иодидного ванадия равна —110°, а для восстановленного кальцием ванадия —65 . Полученные результаты приведены в табл. 7.  [c.111]

Вопрос о влиянии незначительных примесей и металлических добавок иа механические свойства редкоземельных металлов мало изучен для иттрия эти данные известны [14]. Обычные примеси элементов внедрения (углерод, азот, кислород и водород), если они присутствуют в малом количестве, слабо влияют на пластичность и прочность иттрия, чем последний разительно отличается от большей части прочих металлов. Твердость, пластичность н предел текучести иттрия больше всего зависят от предшествующей термообработки, ориентировки зерен и степени наклепа. Титан, ванадий и хром дают с иттрием сходные диаграммы состояния, в которых эвтектика смещена к богатому иттрием краю диаграммы. В копцеитращ1и до 5"6 эти металлы не оказывают вредного влияния на пластичность иттрия. Кремний, алюминий, железо н никель малорастворимы в иттрии, так что в концентрации до 0,5% они почти не отражаются на прочности и величине предела текучести иттрия. В пределах до 5% их содержания пластичность иттрия понижается.  [c.602]


Смотреть страницы где упоминается термин Ванадий — водород : [c.98]    [c.98]    [c.255]    [c.347]    [c.492]    [c.11]    [c.182]    [c.157]    [c.358]    [c.200]    [c.105]    [c.112]    [c.114]    [c.396]    [c.504]   
Смотреть главы в:

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Ванадий — водород



ПОИСК



Ванадий 273, 275, ЗСО

Ванадий Образование с водородом псевдогидридов

Ванадит

Водород

Диаграмма состояний алюминий азот ванадий-водород



© 2025 Mash-xxl.info Реклама на сайте