Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Радиация, действие на металл

Радиация, действие на металл 154, 155 Растворители 252 Растрескивание 28, 29 адсорбционное 320 водородное 58, 148 сл. транскристаллитное 156 Ржавление 16 Ржавчина, удаление 253 Ряд  [c.453]

Радиационное облучение. При эксплуатации атомных электростанций, синхрофазотронов и других сооружений конструкции находятся под воздействием ионизирующего облучения, которое приводит к изменению механических свойств материалов. Действие радиационного облучения на металлы аналогично понижению температуры, то есть повышает прочностные характеристики и уменьшает пластические свойства. При длительной работе бетонных сооружений под воздействием радиации происходит понижение их жесткостных свойств и уменьшение модуля упругости.  [c.64]


Наименьшая скорость коррозии стали наблюдалась в мае на атмосферной площадке, что объясняется отсутствием частого смачивания. Длительные (примерно в течение 3 лет) испытания стали на воздухе показали, что значительное влияние на ускорение процесса коррозии металла оказывают небольшие осадки в начале эксперимента. В течение 15 сут после начала проведения опыта скорость коррозии возросла, после чего началось постепенное замедление, что объясняется накоплением продуктов коррозии и действием солнечной радиации (182 ч), способствующей уплотнению про-  [c.65]

Существенное снижение аффективной электропроводности стенок охлаадающих каналов сильно уменьшит МГД-потери давления. Для этого на стенки охлавдащих каналов мокно нанести высокоомное покрытие. Покрытие с удельным поверхностным сопротивлением, как у полупроводников (10 Ю" Ом-см), уменьшит МГД-потери давления приблизительно на два порядка. Эти покрытия должны противостоять коррозии под действием жидкого металла при наличии интенсивной радиации.  [c.85]

О воздействии радиации на коррозионное поведение металлов известно мало. Влияние облучения на коррозионные свойства можно сравнить с действием холодной деформации, с той разницей, что при облучении в коррозионной среде образуются локальные пики смещения и химические вещества (например, HNOj или HgOa), влияние которых на коррозию вторично. Это значит, что стойкость тех металлов, скорость коррозии которых лимитируется диффузией кислорода, практически не изменится после облучения. В кислотах скорость коррозии облученной стали (но не чистого железа) повысится, а стойкость облученного никеля останется прежней, так как он менее чувствителен к механической обработке.  [c.154]

Обычно выбор материалов для контура водо-водяных реакторов, которые работают при максимальной температуре 300° С, делают между углеродистыми и низколегированными сталями или аустенитными нержавеющими сталями. Скорость коррозии этих материалов низкая для нержавеющей стали при оптимальных условиях она составляет 0,5 г/м в месяц или 0,0007 мм в год, в то время как для углеродистых и низколегированных сталей 1,5—3 г/м в месяц или 0,0023—0,005 мм в год. Поэтому нет особой необходимости уменьшать возникающие напряжения или улучшать герметичность в хорошо контролируемых системах. Однако значительные проблемы связаны с продуктами коррозии, которые циркулируют через реакторную систему и высаживаются на поверхность металла или вымываются с нее непрерывно или периодически в зависимости от условий работы. Эти продукты коррозии обычно присутствуют в виде изолированных частиц диаметром <1 мкм и представляют собой шпинель типа R3O4, где R — железо, никель и хром. Скорость накопления продуктов коррозии в больших реакторах может достигать 10 0 г/сут. Они могут выпадать в осадок в зонах, где нет движения теплоносителя или действуют большие градиенты давления и высокие скорости теплопереноса, и собираться на поверхности тепловыделяющих элементов, где они активируются. Осажденное вещество воздействует на активацию, гидравлику, теплоперенос и реактивность. Наиболее значительный эффект состоит в том, что они могут после облучения в активной зоне высаживаться на участках, которые плохо защищены от радиации или которые имеют лишь временную защиту и поэтому могут представлять опасность для обслуживающего персонала. Активации подвергается большинство элементов, входящих в состав стали. Но для реактора с длительным сроком службы наибольшую опасность представляет нуклид Со из-за большого периода полураспада и высокой у-ак-тивности. Поэтому необходимо уменьшатд количество продуктов коррозии и связанную с ней радиоактивность, сохраняя низкую скорость коррозии. Важно также при изготовлении контура реактора использовать материалы с минимальным содержанием кобальта. Стеллиты, которые содержат значительное количество кобальта, не должны контактировать с теплоносителем. Другие сплавы надо выбирать с учетом минимального содержания кобальта. Это особенно относится к никелевым рудам, обычно содержащим кобальт, который не всегда удается полностью удалить в процессе экстракции. Различные условия работы реакторов PWR и BWR требуют различных методов контроля коррозионных процессов.  [c.151]


Примерами применений радиац.-технол, процессов, осн. на использовании свойств Р. д., являются повышение коррозионной стойкости металлов под влиянием НОННОЙ имплантации, деформац, упрочнение облучённых ионных кристаллов, ускоренная полимеризация пластмасс, нейтронное трансмутац. легирование Si и др. Совокупность методов для создания материалов, устойчивых к облучению, а также для придания материалам нужных свойств под действием облучения составляют предмет радиац. материаловедения.  [c.204]

В результате действия радиации на жидкости для гидравлических систем заметно изменяется их вязкость [11]. Исследования показали, что вязкость жидкости на нефтяной основе MIL-0-5606, загущенной полимером, при действии радиации значительно снижается. Меньше снижается вязкость жидкости на основе эфиров кремневой кислоты жидкости же на основе хлорфенилсиликонов затвердевают. На окислительнокоррозионные характеристики вредно действуют у ИЗлучения. Наибольшие изменения испытывает жидкость по спецификации MIL-0-5606 она сильно разрушается, о чем свидетельствуют повышение кислотного числа и коррозия металлов.  [c.352]

Фтор(Н1ласт-3 - термопласт на основе ПТФХЭ (9 = 210°С, Ое =+50°С) отличается от фторопласта-4 большей твердостью и прочностью (см. табл. 2.7) и высокой технологичностью благодаря возможности переработки литьем под давлением. Фторопласт-3 практически не проявляет хладотекучести, имеет высокую химическую стойкость к действию концентрированных кислот, щелочей, окислителей, не растворяется при нормальной температуре ни в одном из растворителей, набухает только в хлорированных углеводородах и простых эфирах, разлагается под действием расплавленных Щелочных металлов и элементарного фтора при высокой температуре. Стойкость к радиации вьЕпе, чем у фторОпласта-4 Антифрикционные свойства значительно хуже, чем у фторо-. пласта-4, поэтому область его применения ограничивается УН и клапанами для топливной, криогенной и холодильной аппаратуры [90].  [c.94]

Полимерные покрьггия. Защитные свойства полимерных покрытий определяются несколькими факторами проницаемостью для коррозионной среды, способностью ингибировать развитие коррозионных процессов под слоем покрытия, способностью сохранять низкую проницаемость во времени под воздействием солнечной радиации, кислорода и влаги воздуха, способностью сохранять адгезию к основе. Самые современные системы лакокрасочных покрытий проницаемы для воды и кислорода, и задача состоит в том, чтобы снизить до минимума эту проницаемость. Диффузия через слой по1фытия затормаживается подбором полимерного связующего и введением в него пигментов - тонкодисперсных частиц минерального происхождения, увеличивающих путь диффузии и снижающих скорость электрохимических реакций на поверхности метад-ла. К таким пигментам относятся хромат свинца, хромат и молибденат цинка и рдд других соединений, выделяющих ионы, способные приводить сталь в пассивное состояние. Применяют также введение дисперсной цинковой пыли, которая действует протекторно, подобно монолитному цинковому покрытию. В трунтовые покрытия, прилегающие к металлу, вводят ингибирующие пигменты. Для по-  [c.556]

Для обеспечения адгезии термоусаживаемых изделий (например, перчаток), разработанных для АЭС, с пластмассовой изоляцией кабеля, металлами и между собой применяется самослипающийся жгут ЛП-319 на основе кремнийорганического каучука. Указанный жгут накладывается в местах герметизации в виде под.моток. Он обладает высокой нагревостойкостью, влаго- и водостойкостью, стойкостью к действию озона, способен длительно работать прн температуре от —50 до 4-180 С и кратковременно при температуре +250 °С. Жгут обладает стойкостью к воздействию радиации. Жгут поставляется на катушках массой не более 500 г.  [c.40]

Газообразные смазки представляют собой индивидуальные газы, их смеси или пары некоторых органических продуктов. Их действие основано на уменьшении трения и износа несмазанных поверхностей при замене воздуха атмосферой этих газов или паров. В качестве таких смазок можно использовать пары нефтепродуктов (например, керосина), реакционноспособные газы — серо- и галогенсодержащие соединения (СС 2р2, СВгРз и т. п.). Такие смазки химически взаимодействуют с поверхностью металла, образуя на ней смазочную пленку. Их достоинством являются низкие коэффициенты трения и полное отсутствие загрязнения трущихся деталей. Применяют их при крайне низких (криогенных) или очень высоких температурах, значительных удельных нагрузках, интенсивной радиации. Однако эта группа смазочных материалов мало распространена.  [c.9]



Смотреть страницы где упоминается термин Радиация, действие на металл : [c.95]    [c.229]    [c.154]    [c.111]    [c.266]   
Коррозия и борьба с ней (1989) -- [ c.154 , c.155 ]



ПОИСК



Радиация



© 2025 Mash-xxl.info Реклама на сайте