Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газовые процессы в тепловой диаграмме

Рассмотрим процесс течения на t -s-диаграмме (рис. 76), которая широко применяется для анализа работы сопл паровых и газовых турбин. По оси абсцисс откладывается энтропия S, которая характеризует энергию, необратимо перешедшую в тепло. Для вязкого газа энтропия учитывает работу сил сопротивления. Движение невязкого газа происходит при постоянной энтропии, поэтому такой процесс называют изоэнтропическим. На рис. 76 он изображен вертикальной прямой 1—2.  [c.126]


Для сжатия воздуха в газовых турбинах применяют не поршневые, а преимущественно центробежные и аксиальные (лопаточные) компрессоры в них, а также на лопатках газовых турбин рабочее тело движется с большими скоростями, что сопровождается трением как в самом газе, так и между газом и стенками. Часть кинетической энергии движущегося газа затрачивается на трение эта энергия превращается в тепло и усваивается газом. Как было сказано, трение — процесс необратимый сжатие и расширение газа по адиабате при наличии трения сопровождаются ростом энтропии, и эти процессы в Ts-диаграмме не будут изображаться прямыми, параллельными оси ординат.  [c.167]

Процесс горения в камере сгорания можно организовать так, чтобы он проходил при постоянном давлении или же при постоянном объеме. Сообразно с этим различают газовые турбины, работающие по циклу с подводом тепла при постоянном давлении и по циклу с подводом тепла при постоянном объеме. Каждый Из этих идеальных циклов можно отобразить на диаграммах v—p и s—T и для каждого из них можно найти термический к. п. д.  [c.93]

Из сказанного следует, что цикл ТРД осуществляется следующим образом (р, у-диаграмма на рис. 10-33) сжатие воздуха в турбокомпрессоре от атмосферного давления до давления р происходит по адиабате 1-2. Затем к рабочему телу подводится тепло выделяющееся при сгорании топлива этот процесс происходит при постоянном давлении (изобара 2-3). Расширение рабочего тела (воздух- -продукты сгорания) в газовой турбине и затем в реактивном сопле 3 двигателя осуществляется по адиабате 3-4 (от точки 3 до точки Ъ — отдача работы в газовой турбине, а от точки Ъ до точки 4 — ускорение потока в сопле). Цикл замыкается изобарой 4-1 при давлении, равном атмосферному.  [c.347]

Если точка а в такой диаграмме изображает исходное состояние вещества, взятого в твердой фазе, то процесс изобарного подвода тепла с переходом вещества сначала в жидкое, а затем в газообразное состояние изобразится горизонтальной линией a-b- -d, причем участок ее а-Ь соответствует нагреву твердой фазы до расплавления, участок Ь-с — нагреву жидкой фазы до температуры кипения и участок -d —перегреву газовой фазы (т. е. паров данного вещества).  [c.109]

В цилиндре действительного двигателя уменьшение давления выхлопа характеризуется линией 4—1 (см. фиг. 8. 1), количество газа в этом процессе все время убывает. Следовательно, так как продукты горения в горючую смесь не обращаются, то цикл разомкнут между точками 4 1. Процесс между этими точками заменен на диаграммах (фиг. 8. 2 и 8. 3) изохорным процессом с отводом от рабочего агента тепла в холодильник, причем количество рабочего агента принимается за постоянное и неизменное по составу во всех процессах цикла. Такая замена возможна в обеих диаграммах потому, что газовые постоянные горючей смеси и продуктов горения по величине незначительно отличаются одна от другой, работа каждого процесса 1—2 как на фиг. 8. I, так и на фиг.. 8.2 равна нулю и действительное количество тепла д , отдаваемое продуктами сгорания воздуху при переходе от состояния 4 к состоянию 1 (см. фиг. 8. 1), равно количеству тепла д , отнимаемому от рабочего агента при изохорном переходе от состояния 4 к состоянию 1 (фиг. 8.3), т. е. д 2=д2.  [c.160]


На фигуре 8-2, б дана диаграмма теоретического цикла газовой турбины с регенерацией тепла. Воздух сжимается в компрессоре по адиабате 1—2. По линии 2—2 происходит в идеальном случае (без учета гидравлических потерь) подогрев воздуха в регенераторе. По линии 2 —3 — процесс сгорания топлива при постоянном давлении. Адиабатическое расширение газа происходит по линии 3—4 (в соплах и рабочих лопатках).  [c.247]

В то же время есть основания полагать, что вихревой эффект Ранка позволяет получать температуру холодного потока Тс<Та, и, таким образом, значение Та, определяемое соотнощением (7-14), не является предельным значением температуры холодного потока. В пользу этого предположения свидетельствуют и опытные данные. Они показывают, что из-за вакуума в осевой части вихря термодинамическая температура газовых частиц в ней может быть ниже Те. Поэтому газовые частицы, образующие выходящий через диаграмму при атмосферном давлении холодный поток, при расщирении будут отдавать тепло частицам, находящимся в осевой части вихря. Этот процесс теплообмена может привести при достаточно совершенной конструкции вихревой трубы к тому, что будут достигнуты температуры, более низкие, чем те, которые отвечают адиабатному расширению.  [c.187]

Рассматривая диаграмму цикла (рис.6-51), можно установить, что процесс подвода тепла осуществляется между состояниями 2 и 3. В описанной установке, для которой ранее был получен ряд зависимостей, подвод тепла осуществляется при сжигании топлива. Между тем в газовых турбинах продукты сгорания покидают турбину при температуре 4, значительно более высокой, чем температура воздуха 2 который в дальнейшем должен быть подвергнут нагреву. Отсюда возникает возможность регенерации тепла продуктов сгорания, покидающих турбину. Для этого воздух и продукты сгорания направляют в теплообменный аппарат — регенератор, в котором через разделительную стенку тепло передается от продуктов сгорания воздуху, и уже после этого продукты сгорания покидают установку, а подогретый воздух поступает в камеру сгорания. На рис. 6-52 показана схема такой установки с одноступенчатой газовой турбиной. На рис. 6-53 эта же установка показана в условных обозначениях. Регенеративный подогрев увеличивает экономичность установки, но установка регенератора усложняет схему и потому от него иногда отказываются, мирясь с потерями тепла.  [c.147]

Энтальпия имеет большое значение. Введение в термодинамику этого параметра значительно упрощает многие расчеты газовых процессов и циклов и дает возможность примеиить графический способ изучения термодинамических процессов и циклов. Известно, что графический способ расчета почти во всех областях науки и техники применяется с большим успехом, в том числе и при расчетах газовых и паровых процессов и циклов. Энтальпией особенно целесообразно пользоваться тогда, когда в виде основных параметров принимают р и Г, а не U и Г. Это наглядно можно видеть, если энтальпию i сравнить с внутренней энергией и. Так, например, известно, что при V"= onst процесс v=U2—Ui, а при p= oonst =/2— 1. Следовательно, в зависимости от характера процесса пользуются тем или иным параметром. Оба параметра и и i имеют в термодинамике большое значение, являются идентичными по своей роли и широко применяются. Изменение энтальпии для многих газов и их смесей при p= nst и различных температурах вычислено и приведено в справочной и учебной литературе в виде таблиц или диаграмм. Пользуясь этими готовыми данными, легко определить количество тепла <7р процесса для этого необходимо лишь взять из таблицы или диаграммы разность значений энтальпий в конечном и начальном состояниях.  [c.86]

Исключение составляет лишь процесс расширения пара, который в паровой машине не доводится до конечного давления pi, так как для этого понадобились бы рабочие цилиндры чрезвычайно больших размеров. Поэтому расширение пара в цилиндре машины производится лишь до некоторого давления Рз>Рг, после чего открывается выпускной клапан и пар расширяется до давления рг у е вне цилиндра машины. Вследствие этого по последовательности процессов цикл паросиловой установки с паровой машиной сходен с циклом поршневого газового двигателя с подводом тепла при р = onst. Относительно условности изображения процесса 62—расширения пара вне машины на T—s или p v диаграмме справедливы те же соображения, что и относительно соответствующего процесса в газовь х поршневых двигателях.  [c.443]


Значение к. п. д. действительного рабочего шроцесса газовой турбины оказывается значительно более низким, поскольку действительный процесс, представленный на 7 5-диаграмме (рис. 45—IV), совершается при сжатии не по адИ аб1ате 1-2, а пО пол)итропе 1-2, в р езультате иагрева воздуха от работы трения в лопатках после сообщения тепла по изобаре 2 -3 расширение газа происходит по политропе 3-4 вследствие нагрева воздуха от трения в лопатках. По этим причинам термодина-м ический к. п. д. действительного процесса при заданных параметрах Рь Р2 и k оказывается меньше теоретического. Кроме того, к. п. д. действительного процесса снижается ввиду потерь в компрессоре и турбине (к. п. д. компрессора не превышает 0,84—0,85, а турбины  [c.321]

Для изучения ироцгссов превращения тепла в работу в тепловых двигателях, кроме пяти параметров р, V, Г, и и I, вводят еще один — энтропию (обозначается ). Название этого параметра происходит от греческого слова тропос , что значит превращение . Из последующего будет видно, что для исследования процессов превращения тепловой и механической энергий в тепловых машинах широко используют именно этот параметр состояния газа. Значения,энтропии для различных газов и широко используемых газовых смесей подсчитывают по особым формулам и сводят в таблицы используют вычисленные значения и для составления расчетных диаграмм.  [c.27]

Как было показано при рассмотрении паровых турбин, трение в газе сопровождается передачей тепла трения рабочему телу. В паровых турбинах, если это тепло передается насыщенному пару, это вызывает повышение степени его сухости при остающейся постоянной температуре (р = onst). В газотурбинном агрегате передача тепла трения идеальному газу (продуктам сгорания в газовой турбине и воздуху в компрессоре) вызовет при остающихся без изменения давлениях р2 и Pi повышение температуры воздуха в конце сжатия и продуктов горения в конце расширения. Эти состояния соответственно обозначены в pv-диаграмме (рис. 6-51) точками 2 и 4, а процессы сжатия и расширения с учетом трения изображаются кривыми /-2 и 3-4.  [c.146]

ПЫМ путем. Сушильные барабаны по своей природе требуют работы параллельным током (движение материала параллельно движению газа, воздуха), т. к. в этом случае происходит более равномерная сушка крупных и мелких кусков маттоиала при работе противотоком время пребывания мелких частиц материала больше крупных, и чем мельче частица, тем дольше она будет находиться в барабане, что не согласуется с длительностью С. т. о. правильной С. при работе противотоком быть не может. Иногда строят сушильные барабаны с наружным обогревом, т. е. газы до поступления в барабан омывают его боковую поверхность. Системы барабанов с наружным обогревом находят все меньшую область применения, так как этим усложняется конструкция и увеличивается расход тепла. Тепловой расчет сушильных барабанов весьма просто производится при помощи J—d-диаграммы по основной схеме нормального сушильного процесса, к-рой можно пользоваться при нек-ром допущении и в случае С. дымовыми газами или Отходящими газами той или иной тепловой установки. Расход тепла на испарение 1 кг влаги в сушильном барабане обычно колеблется в пределах 850—2 ООО al в зависимости от свойств материала, теплового агента, конструкции аппарата и теплового режима С. Характерными величинами для расчета размеров барабана являются Скорость газового потока по барабану. и длительность С. или напряжение барабана по влаге, т.е. количество испаряемой влаги в час с 1 объема барабана. Установив по количеству влаги, подлежащей испарению, количество газов V m 4, проходящее через выходное сечение барабана, определяют диаметр барабана из ф-лы  [c.246]

Как видно из диаграммы цикла в р У координатах (рис. 203, б), величина (площадь V — Г - 2 —2) характеризует снижение работы сжатия сравнИ тельно с обычным адиабатным процессом 1—2) за счет охлаждения (процесс 1 —Г ) воздуха в холодильнике X после первой ступени сжатия (процесс 1—1 ) в компрессоре низкого давления КНД. Аналогично величина АЬт. характеризует дополнительную работу в турбине низкого давления ТНД за счет дополнительного подвода тепла (процесс 3 — 5") в камере сгорания низкого давления КСНД после адиабатного расширения в газовой турбине высокого давления ТВД. Однако вместе с ростом коэффициента полезной работы увеличивается и необходимый внешний подвод тепла во вторичной камере КСНД — ЛQ (площадь с—3 — 3" — с1 в координатах Т — 5), в первичной камере КСВД — А(площадь а — 2 —2—Ь) в связи с тем, что после компрессора высокого давления КВД при промежуточном охлаждении выходит более холодный воздух сравнительно с одноступенчатым адиабатным сжатием (Т 2 <  [c.350]


Смотреть страницы где упоминается термин Газовые процессы в тепловой диаграмме : [c.294]    [c.257]    [c.127]    [c.94]    [c.466]   
Смотреть главы в:

Техническая термодинамика Издание 6  -> Газовые процессы в тепловой диаграмме



ПОИСК



Газовые процессы в диаграмме

Газовые процессы — 47 —

Диаграммы Процесс

Тепловой процесс - Диаграмм



© 2025 Mash-xxl.info Реклама на сайте