Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Катодная защита источники тока

Электрическая схема катодной защиты внешним током приведена на рис. 202, б. Источник постоянного тока / дает на зажимах напряжение , необходимое для защиты определенного участка трубопровода. Ток (отрицательные заряды) от отрицательного полюса источника по проводу с сопротивлением попадает в точке дренажа на защищаемую трубу, сопротивление которой / 2- Затем следует сопротивление У з, являющееся переходным сопротивлением между трубопроводом и грунтом, которое тем больше, чем в лучшем состоянии находится защитная  [c.304]


Для защиты больших поверхностей и значительной протяженности используют преимущественно катодную защиту внешним током. Проект катодной защиты, в общем случае, должен содержать такие же исходные данные, как и при разработке протекторной защиты. Кроме того, необходимо иметь гидрогеологический разрез скважины под анодные заземлители, источник питания СКЗ, схему расположения смежных металлических и армированных сооружений, а также наличие заземленных потребителей.  [c.26]

Принципиальная схема катодной защиты внешним током приведена на рис. 6.9, а. От отрицательного полюса источника 1 по проводнику отрицательные заряды поступают в месте присоединения так называемого дренажа на защищаемую трубу 3 и текут по ней, попадая через дефектные места изолирующего покрытия в грунт. Из грунта ток переходит на анодное заземление 2, откуда по 14—166 209  [c.209]

Электрическая схема катодной защиты внешним током приведена на фиг. 228, б. Источник постоянного тока 1 дает на зажимах напряжение Е, необходимое для защиты определенного участка трубопровода. Ток (отрицательные заряды) от отрицательного полюса по проводу с сопротивлением попадает в точке дренажа на защищаемую  [c.298]

Защитный эффект в отличие от разностного находит большое практическое применение в виде так называемой электрохимической катодной защиты, т. е. уменьшении или полном прекраш,ении электрохимической коррозии металла (например, углеродистой стали) в электролитах (например, в морской воде или грунте) присоединением к нему находящегося в том же электролите более электроотрицательного металла (например, магния, цинка или их сплавов), который при этом растворяется в качестве анода гальванической пары из двух металлов (рис. 198), или катодной поляризацией защищаемого металла от внешнего источника постоянного тока.  [c.295]

Рис. 257. Электрическая схема катодной защиты ЯГ — источник постоянного тока — катодная поляризуемость защищаемой конструкции анодная поляризуемость вспомогательного анода сопротивления npi пра — сопротивление соединительных проводов — то же, защищаемой конструкции — то же, защитного изолирующего покрытия — то же, электролита между защищаемой конструкцией и вспомогательным анодом — то же, вспомогательно-Цф а Рис. 257. <a href="/info/4765">Электрическая схема</a> <a href="/info/6573">катодной защиты</a> ЯГ — <a href="/info/578855">источник постоянного тока</a> — катодная <a href="/info/10269">поляризуемость</a> защищаемой конструкции анодная <a href="/info/10269">поляризуемость</a> вспомогательного анода сопротивления npi пра — сопротивление <a href="/info/305462">соединительных проводов</a> — то же, защищаемой конструкции — то же, защитного изолирующего покрытия — то же, электролита между защищаемой конструкцией и вспомогательным анодом — то же, вспомогательно-Цф а

С помощью внешнего источника тока. Шкой вид защите называют катодной защитой рис.27).  [c.61]

Источниками блуждающих постоянных токов обычно являются пути электропоездов, заземления линий постоянного тока, установки для электросварки, системы катодной защиты и установки для нанесения гальванических покрытий. Источники блуждающих переменных токов — это обычно заземления линий переменного тока или токи, индуцированные в трубопроводах проложенными рядом электрическими кабелями. Пример возникновения блуждающего постоянного тока от трамвайной линии, где стальные рельсы используются для возвращения тока к генераторной станции, показан на рис. 11.1. Вследствие плохого контакта рельсов на стыках и недостаточной изоляции их от земли часть тока выходит в почву и находит пути с низким сопротивлением, например подземные газо- и водопроводы. В точке А труба попадает под воздействие катодной защиты и не подвергается коррозии, а в точке В, напротив, сильно корродирует, так как по отношению к рельсам является анодом. Если в точке В труба защищена неметаллическим покрытием, это усугубляет коррозионные разрушения, так как в этом случае все блуждающие токи выходят через дефекты в покрытии трубы, что вызывает увеличение плот-, ности тока на ограниченных участках поверхности и ускоряет разрушение трубы.  [c.210]

Сила блуждающих токов может колебаться с большими или меньшими интервалами, в зависимости от колебаний нагрузки на источнике тока. Этим они отличаются от гальванических токов или токов катодной защиты, которые относительно стабильны. Поэтому блуждающие токи часто можно обнаружить, регистрируя потенциал корродирующей системы по отношению к электроду сравнения в течение 24 ч. Можно также установить происхождение этих токов, найдя, например, генератор, нагрузка которого меняется в течение суток аналогично изменениям потенциала. Если блуждающие токи возрастают в 7—9 и 16—18 ч, то источником их, вероятнее всего, являются трамвайные рельсы. Если предполагается, что источником блуждающих токов служит система катодной защиты, то для проверки можно через равные промежутки времени быстро включать и выключать защитный ток, наблюдая изменения потенциала корродирующей системы.  [c.213]

Специальные аноды и катодная защита. Если дренаж между точками В я С (рис. 11.1) установить невозможно, то в направлении рельса закапывают специальный анод из чугуна, который соединяют с точкой В медным проводником. Тогда блуждающие токи вызывают коррозию только этого специального анода, замена которого обходится достаточно дешево. Если в цепь между анодом и трубой включен источник постоянного тока и ток течет в направлении противоположном блуждающим токам, то это будет равносильно катодной защите трубы. Такая защита применяется, когда дополнительного анода недостаточно для полного устранения коррозии блуждающими токами.  [c.214]

ЖЕРТВЕННЫЕ АНОДЫ. Если вспомогательный анод изготовлен из металла более активного (в соответствии с электрохимическим рядом напряжений), чем защищаемый, то в гальваническом элементе протекает ток — от электрода к защищаемому объекту. Источник приложенного тока (выпрямитель) можно не использовать, а электрод в этом случае называют протектором (рис. 12.2). В качестве протекторов для катодной защиты используют сплавы на основе магния или алюминия, реже — цинка. Протекторы, по существу, служат портативными источниками электроэнергии. Они особенно полезны, когда имеются трудности с подачей электроэнергии или когда сооружать специальную линию электропередачи нецелесообразно или неэкономично. Разность потенциалов разомкнутой цепи магния и стали составляет примерно 1 В (в морской воде магний имеет Е = —1,3 В), так что одним анодом может быть защищен только ограниченный участок трубопровода, особенно в грунтах с высоким удельным сопротивлением. Столь небольшая разность потенциалов иногда  [c.218]

Катодная защита основана на наложении отрицательного потенциала от внешнего источника тока на металл, при этом значительно замедляется процесс его ионизации, а в реакцию деполяризации вступают электроны не с металла, а от внешнего источника тока. При этом положительный полюс источника тока подсоединяется к анодному заземлителю. Обязательным условием катодной защиты является наличие токопроводящей среды (природные почва, вода и т.п.) между защищаемым сооружением и анодным заземлителем. Критериями эффективности катодной защиты являются защитный потенциал и плотность тока.  [c.4]


Основными устройствами катодной защиты являются станция катодной защиты (СКЗ) и анодный заземлитель (АЗ). СКВ состоит из источника питания постоянного тока, регулятора напряжения, электросчетчика и измерительных приборов.  [c.4]

Второй электрод 3 (анодное заземление) соединяется с положительным полюсом источника тока и действует в качестве анода. Катодная защита возможна только в том случае, когда защищаемая конструкция и анодное заземление находятся в электрическом и электролитическом контакте первое достигается с помощью металлических проводников, а второе благодаря наличию электролитической среды 5 (грунт), в которую нагружена защищаемая конструкция и анодное заземление.  [c.5]

Источниками блуждающих токов служат линии электрофицированных железных дорог, трамваев, метрополитена, линии передач постоянного тока, работающие по системе провод-земля , анодные заземлители установок катодной защиты не включенных в систему защиты рассматриваемого подземного металлического сооружения. Наиболее сильно коррозия под действием блуждающих токов проявляется вблизи электрофицированного рельсового транспорта. Процессы возникновения в земле блуждающих токов показаны на рис. 4.  [c.21]

Для обеспечения катодной защиты днища и боковой поверхности резервуара потребуется 2 анода, отстоящих от стенки на расстоянии 6,33 м (соответственно расстояние между анодами 4-Д-2 /=22,79-2-6,33 )0,13 м),и источник питания, обеспечивающий величину защитного тока 36 А.  [c.82]

Рис. 31. Схема катодной защиты с внешним источником постоянного тока Рис. 31. Схема <a href="/info/6573">катодной защиты</a> с внешним <a href="/info/403856">источником постоянного</a> тока
Для определения необходимого числа установок катодной защиты (УКЗ) необходимы следующие исходные данные удельное электрическое сопротивление грунта в поле токов катодной защиты удельное электрическое сопротивление грунта по трассе и в месте анодного заземления диаметр, толщина трубопровода вид изоляционного покрытия наличие и месторасположение источников сетевого электропитания.  [c.188]

Источником тока для электрохимической катодной защиты служат селеновые выпрямители или генераторы постоянного тока.  [c.55]

К ингибиторам, предназначенным для использования в ХИТ,, помимо общих требований, предъявляется ряд специальных. В химических источниках тока защита от коррозии обеспечивается преимущественным торможением частной катодной реакции. Анодная реакция в присутствии ингибитора не должна или почти не должна замедляться. Эффективность работы другого электрода ХИТ (катода) не зависит от присутствия ингибитора, т. е. электрические, характеристики не ухудшаются при введении ингибитора и не являются функцией его концентрации. Ингибитор не восстанавливается и не окисляется даже при наиболее отрицательных и наиболее-положительных потенциалах рабочих электродов ХИТ, т. е. не подвергается электрохимическим превращениям с потерей ингибирующей способности.  [c.83]

Протекторная и катодная защита основана в наложении отрицательного потенциала на поверхность металла, при котором значительно замедляется процесс его ионизации. В протекторной защите источником поляризующего тока является гальванический элемент, состоящий из защищаемой металлической конструкции и протектора, изготовленного из специального сплава, характеристика которых приведена в табл. 3.  [c.11]

Катодная защита внешним током, осуществляемая с помощью подачи постоянного тока от внешнего источника, к отрицательному иолюсу которого (т.е. в качестве катода) присоединяется  [c.303]

Менее известно, что Томас Альва Эдисон уже около 1890 г. пытался осуществить катодную защиту судов при помощи тока от внешнего источника. Однако имевшиеся в его распоряжении источники тока и материалы для анодов были еще недостаточно совершенны. В 1902 г. К. Коэн сумел осуществить катодную защиту постоянным током от вргешнего источника на практике. Первую установку катодной защиты для трубопроводов соорудил в 1906 г. технический директор фирмы Штадтверке Карлсруэ Херберт Гепперт [28]. В зоне влияния трамвайной линии бы-  [c.34]

Катодная защита внешним током - защита металла, производимая с помощью постоянного тока от внешнего источника, при которой защищаемый металл присоединяется к отрицательному полюсу (т. е. в качестве катода), а к положительному полюсу - дополнительный электрод (заземление), поляризуемый при этом анодно. Катодная защита внешним током в настоящее время широко применяется как дополнительное средство (к изолирующему покрытию) защиты от коррозии подземных металлриеских сооружений - трубопроводов и резервуаров [2, 3, 4, 5].  [c.11]

Сак видно из электрической схемы катодной защиты внешним током (рис. 2), источник постоянного тока /дает на зажимах напряжение Е, необходимое для защиты определенного участка трубопровода. Ток (отрицательные заряды) от отрицательного полюса по проводу с сопротивлением попадает в точке дренажа на защищаемую трубу, сопротивление которой Затем следует сопротивление Щ, являющееся переходным сопротивлением между трубопроводом и грунтом, которое тем больше, чем в лучшем состоянии находится изоляция трубопровода. Сопротивление грунта на пути между трубопроводом и анодным заземлением в большинстве случаев не принимается во внимание вследствие незначительной его величины.  [c.12]


Известны два способа электрохимической защиты металла о г кор-(юзии протекторная и катодная защита внешним током (электрозащита). Ио первому способу заищта металла производится путем присоединения к нему другого металла с более отрицательным потенциалом. При этом защищаемый металл становится катодом, а п])исоединяемый — анодом, или так называемым протектором. По второму способу защита осу-п.1,ествляется с помощью тока oi вне1Пнего источника. В этом случае защищаемый металл присоединяется к отрицательному полюсу в качестве катода. Анодом может быть электрод из любого проводника, обеспечивающего низкое переходное сопротивление при погружении его (I коррозионную среду.  [c.80]

Катодная защита внещним током — защита металла от коррозии с помощью постоянного тока от внешнего источника. При этом защищаемый металл присоединяют к отрицательному полюсу внешнего источника (т. е. в качестве катода), а к положительному полюсу присоединяют дополнительный электрод, поляризуемый анодно.  [c.198]

Катодная защита внещним током магистральных трубопроводов, котлов и других паросиловых установок заключается в том, что от источника постоянного тока через катод подводится ток к защищаемому металлическому изделию, а анодом служат дополнительные пластины, опущенные в электролит. В результате основное изделие становится катодом и перестает корродировать (рис. 61).  [c.180]

Катодная защита внешним током — защита металла от коррозии с помощью постоянного электрического тока от внешнего источника, при которой защищаемый металл присоединяют к отрицательному полюсу внещнего источника постоянного тока (т. е. в качестве катода), а к положительному полюсу присоединяют дополнительный электрод, поляризуемый анодно. При таком пропускании тока поверхность защищаемого металла поляризуется катодно ее потенциал при этом смещается в отрицательную сторону, что приводит к ослаблению работы локальных анодов или к их превращению в катоды, т. е. к уменьшению или полному прекращению коррозионного разрушения. Анодный процесс при этом протекает на дополнительном электроде—аноде. Для полного прекращения электрохимической коррозии металла его нужно катодно заполяризо-вать до значения обратимого потенциала ( Vме)обр, а сплав — до значения обратимого потенциала его наиболее отрицательной анодной составляющей. Катодную защиту внешним током щироко применяют как дополнительное (к изолирующему покрытию), а иногда и как самостоятельное средство защиты от коррозии подземных металлических сооружений — трубопрово-  [c.241]

Электрическая схема катодной защиты внешним током приведена на рис. 6.9, б. Источник постоянного тока создает на зажимах напряжение Е, необходимое для защиты определенного участка трубопровода. Ток (отрицательные заряды) от отрицательного полюса по проводу с сопротивлением попадает в точке дренажа на защищаемую трубу, сопротивление которой Я2. Сопротивление является переходным между трубопроводом и почвой, и оно тем больше, чем в лучшем -состоянии даходится защитная изоляция трубопровода, выполняемая обычно из диэлектрических материалов. Сопротивление грунта между трубопроводом и анодным заземлением в большинстве случаев не принимается во внимание вследствие его малого значения, о учитывается, если переходное сопротивление грунт — труба невелико, например при сильно разрушенной или отсутствующей изоляции на поверхности трубопровода. Ток из грунта попадает на анодное заземление, сопротивление которого включает переходное сопротивление грунт — анод, и затем по проводу с сопротивлением 5 возвращается к положительному полюсу источника тока.  [c.210]

Катодная защита внешним током — защита металла от коррозии с помощью постоянного тока от внешнего источника — была предложена Кумберлендом в 1913 г. Она заключается в том, что защищаемый металл при-  [c.347]

Пленка оксида покрывает капли расплавленного металла и препятствует сплавлению их между собой и основным металлом. Для разрушения и удаления пленки и защиты металла от повторного окисления при сварке используют специальные флюсы или ведут сварку в атмосфере инертных газов. Флюсы состоят из смеси хлористых и фтористых солей щелочноземельных металлов (Na I, K I, Ba Ij, LiF, aFj и др.). Действие флюсов основано на растворении пленки оксидов. При сварке в защитных газах пленка разрушается в результате электрических процессов в том случае, если она оказывается в катодной области дуги. Это реализуется при сварке плавящимся электродом на постоянном токе обратной полярности и сварке не-плавящимся электродов на переменном токе с использованием специальных источников тока (см. разд. 5, гл. II, п. 6).  [c.236]

По данным И. Л. Розенфельда и Л. И. Антропова, катодная поляризация металла от внешнего источника тока может существенно изменить скорость его коррозии в результате десорбции анионов или адсорбции катионов, которые повышают поляризацию катодного процесса, особенно резко при переходе потенциала нулевого заряда данного металла. Таким образом, катодная поляризация повышает эффективность катионных ингибиторных добавок, а эти добавки могут повысить эффективность катодной электрохимической защиты металлов, снижая значение необходимого защитного тока. Так, защитный ток для железа в 1-н. H2SO4 в присутствии 0,1 г/л трибензиламина (СдНбСН2)зК уменьшается в 14 раз. При катодной поляризации замедляющее действие могут оказывать такие катионные добавки, которые обычно не являются ингибиторами коррозии.  [c.366]

В сочетании с электрохимической катодной заш,итой, которая весьма экономична в комбинации с высококачественным защитным покрытием. Электрохимическая катодная защита осуществляется в двух вариантах а) с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) б) с применением протекторов из металлов с электродным потенциалом более отрицательным, чем у стали (магний, цинк, алюминий или их сплавы).  [c.394]

Для катодной защиты необходимы источник постоянного тока и вспомогательный электрод, обычно железный или графитовый, )ЗСположенный на некотором расстоянии от защищаемого объекта. Лоложительный полюс источника постоянного тока подключают к вспомогательному электроду а отрицательный — к защищаемому сооружению. Таким образом, ток протекает от электрода через электролит к объекту. Значение приложенного напряжения точно не определено, оно должно быть лишь достаточным для создания необходимой плотности тока на всех участках защищаемого сооружения. В грунтах или водах, обладающих высоким сопротивлением, приложенное напряжение должно быть выше, чем в средах с низким сопротивлением. Напряжение приходится также повышать, когда необходимо защитить как можно больший участок трубопровода с помощью одного анода. Схема подсоединения анода к защищаемому подземному трубопроводу представлена на рис. 12.1.  [c.217]


Электрохимическая защита металлов от коррозии основана на уменьшении скорости коррозии металлических конструкций вутём их катодной и анодной поляризации. Наиболее распространена так называемая катодная защита металла, которая мсшет осуществляться присоединением защищаемой металлической конструкции к отрицательному полюсу внешнего источника постоянного тока или к металлу, имеющему более отрицательный потенциал (протекторная. защита).  [c.36]

Интерес к методу катодной защиты поцземных сооружений возник в начале ШХ в., когда была открыта возможность иооольэо-ления для этой цели постоянного тока внешнего источника.  [c.36]

Рис. 1.1. Схема катодной защиты. Катодная поляризация осуществляется с помощью наложенного тока от внешнего источника, обычно выпрямителя 1, который преобразует переменный ток промышленной частоты в постоянный. Защищаемая конструкция 2 соединяется с отрицательным по.пюсом выпрямителя тока и действует в качестве катода. Рис. 1.1. Схема <a href="/info/6573">катодной защиты</a>. <a href="/info/39667">Катодная поляризация</a> осуществляется с помощью наложенного <a href="/info/69948">тока</a> от внешнего <a href="/info/19735">источника</a>, обычно выпрямителя 1, который преобразует переменный ток <a href="/info/29116">промышленной частоты</a> в постоянный. Защищаемая конструкция 2 соединяется с отрицательным по.пюсом <a href="/info/236705">выпрямителя тока</a> и действует в качестве катода.
С помощью внешнего источника тока. Такой вид защиты называют катодной заи1и-той (рис. 42. 43).  [c.66]

Катодная защита с внешним источником тока получила наибольшее распространение вследствие простоты монтажа и эксплуатации, высокой технологичности и невысокой стоимости. Обычно применяют сетевые источники питания, представляющие собой специальные выпрямители (катодные станции). В значительно меньших объемах применяют автономные катодные станции, содержащие источники постоянного тока термоэлектрогенераторы, турбоальтертаторы, фотоэлектрогенераторы, двигатели внутреннего сгорания с электрическими генераторами. Катодная защита осуществляется установкой, включающей катодную станцию, дренажную линию, анодное заземление и контрольно-измерительные пункты (рис. 31). Отрицательная клемма катодной станции соединяется катодной дренажной линией с защищаемым сооружением. Место соединения дренажной линии с сооружением называется точкой дренажа. Положительная клемма катодной станции соединяется анодной дренажной линией с заземлением, называемым анодным. Ток, стекающий с анодного заземления в землю, вызывает растворение анодных заземлителей. Поэтому с целью обеспечения долговечности анодного заземления стараются использовать малорастворимые анодные материалы.  [c.76]


Смотреть страницы где упоминается термин Катодная защита источники тока : [c.368]    [c.392]    [c.196]    [c.298]    [c.299]    [c.303]    [c.69]    [c.36]    [c.62]    [c.49]   
Коррозия и борьба с ней (1989) -- [ c.217 , c.218 ]



ПОИСК



V катодная

Катодная защита

Катодная защита с наложением тока от внешнего источника и электролитической обработкой воды

Протекторная защита или катодная защита с наложением тока от внешнего источника

Токи катодной защиты



© 2025 Mash-xxl.info Реклама на сайте