Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Внешние силы и механические характеристики машин

ВНЕШНИЕ СИЛЫ И МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МАШИН  [c.359]

Механические характеристики. Перейдем теперь к определению закона движения. Машинный агрегат — это комплекс, состоящий из машины-двигателя, передаточного механизма и рабочей машины. В двигателе создается движущий момент (или движущая сила). В рабочей машине образуется момент (или сила) полезных сопротивлений. Двигатель и рабочая машина имеют собственные кинематические цепи, но при изучении движения агрегата удобно рассматривать его общую кинематическую цепь, не разделяя ее на составные части, т. е. на цепь двигателя, передаточного механизма и рабочей машины. При этом действие внешней среды на механизм изображается внешними моментами (или силами), движущим моментом (силой) и моментом (силой) полезных сопротивлений, приложенными соответственно к ведущему и ведомому звеньям.  [c.58]


Рассмотрим машину, экви-валентная схема которой показана на рис. 8. 6. Здесь Шщ,— приведенная масса привода, движущаяся под действием тягового усилия Q с практически постоянной скоростью V (благодаря большой кинетической энергии ротора двигателя и высокой жесткости его механической характеристики) т—приведенная масса исполнительного органа, нагруженного переменной внешней силой 5 + А5 ).  [c.299]

В связи с указанным во вступлении к настоящему разделу качественным различием случаев торможения, при выборе расчетных схем следует особое внимание уделять определению функциональной зависимости внешних сил. При рабочем торможении к трансмиссии прикладываются внешние силы, заданные как функции времени, а при аварийном торможении закон изменения этих сил во времени определится лишь в результате интегрирования уравнений движения машины. Весьма важно также правильно учесть характер изменения момента, развиваемого двигателем машины. При рабочем торможении двигатель обычно выключается. В случае аварийного торможения переходной процесс в двигателе проходит на нелинейной части механической характеристики,  [c.383]

При изучении этой системы необходимо принимать во внимание механическую характеристику двигателя, диссипативные свойства, характеризующие рассеяние энергии системы и взаимодействие обрабатываемого продукта с вибрирующим органом. Однако во многих вибрационных машинах силы взаимодействия продукта с рабочим органом малы, незначительны также диссипативные силы при возвратно-поступательном движении массы М. В таких вибраторах мощность двигателя расходуется только на преодоление трения в зубчатых передачах и во вращательных кинематических парах. Тогда обобщенные силы можно принять равными нулю. Рассмотрение движения указанной системы без внешних сил позволяет оценить влияние конструктивных параметров на характер движения системы.  [c.125]

Силы или моменты сил двигателей и рабочих машин в функции кинематических параметров (время, положения или скорости звена) называют механическими характеристиками (рис. 6.2.1). При решении задач динамики машин они считаются известными внешними силами и моментами.  [c.486]

Последовательность выполнения на, ЭВМ программы расчета термических напряжений следующая ввод в машину исходных данных, формирование системы алгебраических уравнений, решение системы уравнений, выдача на печать температуры и перемещений узлов, вычисление по перемещениям напряжений и выдача-их на печать. В качестве исходных данных в машину вводят координаты каждого узла, номера элементов, номера узловых точек каждого элемента, граничные условия для теплового расчета (см. рис. 34, а), внешние нагрузки (силы давления газов, усилия шпилек и др.) и точки их приложения, а также физико-механические характеристики материала (Я., а, Е, ji). По перемещениям, полученным в результате решения системы алгебраических уравнений, используя формулы (36) — (39), ЭВМ вычисляет напряжения для центра тяжести треугольного элемента, а по ним — напряжения в узлах как среднее значение для элементов, окружающих рассматриваемый узел. -132  [c.132]


Наиболее распространенным видом колебательных явлений в механических системах (приводах) машин являются вынужденные колебания, вызываемые периодическими внешними силами. При совпадении частоты этих сил с одной из собственных частот системы имеют место наиболее интенсивные вынужденные колебания — так называемые резонансные колебания. Резонансные колебания могут существенно искажать рабочие характеристики машины, исключая возможность ее нормальнй эксплуатации на некоторых расчетных режимах. Кроме того, при резонансных колебаниях динамические нагрузки, действующие на отдельные элементы машины, могут достигать значений, опасных с точки зрения долговечности, а иногда и прочности этих элементов.  [c.5]

В связи с возрастающими скоростями движения элементов машин, роль динамических расчетов непрерывно повышается. Задача создания достаточно прочной и неметаллоемкой машины, способной противостоять возникающим внешним статическим и динамическим силам при их наиболее неблагоприятном сочетании, все время усложняется и требует при своем решении рассмотрения многих факторов, которые ранее, при ограниченных скоростях, могли и не учитываться. Поэтому возникла необходимость/ замены применяемого ранее статического расчета динамическим, при котором машина рассматривается комплексно, как единый электромеханический агрегат. Действующие в нем внешние силы определяются не только сопротивлениями на рабочем органе, но и законами изменения движущего момента как функции времени или скорости. Эта практика получила особое распроетранение применительно к машинам, приводящимся электродвигателями, механические характеристики которых достаточно четко выра- жаются аналитическими зависимостями.  [c.5]

Поскольку механические потери имеют внешний характер по отношению к гидравлической цепи РЦН и не влияют на напорную характеристику машины, то по правилам эквивалентирования электрических схем получена эквивалентная схема замещения РЦН с нелинейным результирующим сопротивлением насоса R PBH (рис.4). По отношению к ветке нагрузки эта схема есть активным двухполюсником и ее можно заменить эквивалентным гидрогенератором, аналог электродвижущей силы которого равный значению соответствующего действительного напора РЦН Н д в режиме холостого хода, а нелинейное внутреннее гидросопротивление R pbh равно входному сопротивлению двухполюсника. Показано, что значение сопротивления R pbh в первом приближении пропорционально расходу Qt-д насоса.  [c.14]

Характер колебательного процесса при включении ФС зависит от упругоинерционных характеристик трансмиссии, а также колес, подвески, корпуса машины и от внешних сил сопротивлений. Силы, вызывающие движение машины, создаются двигателем. Колеса машины с грунтом имеют неудерживаемую связь, которая в определенных условиях может нарушаться, что оказывает влияние на поведение механической системы машины. Таким образом, двигатель, ФС, трансмиссия, движитель, машина, рабочее орудие составляют единую динамическую систему, которую необходимо рассматривать при построении расчетной модели для исследования динамических процессов в ФС. Рассмотрим построение такой модели для колесного трактора Т-40 [37, 39].  [c.137]


Смотреть страницы где упоминается термин Внешние силы и механические характеристики машин : [c.242]    [c.19]    [c.35]    [c.184]   
Смотреть главы в:

Теория механизмов и машин  -> Внешние силы и механические характеристики машин



ПОИСК



Механическая характеристика

Механические машин

Сила внешняя

Силы механические

Характеристика внешняя

Характеристика машины механическая

Характеристика силы

Характеристики машины механически



© 2025 Mash-xxl.info Реклама на сайте