Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контур МПЦ гидродинамических подшипников

В каждой кассете имеется 4 элемента с выгорающим поглотителем нейтронов. Назначение этих компенсирующих стержней состоит в подавлении начальной избыточной реактивности и компенсации температурного эффекта. Благодаря этому поглощению возможно поддержание постоянной небольшой концентрации борной кислоты в первом контуре при полной нагрузке реактора во время всего цикла. Реактор характеризуется высоким отрицательным температурным коэффициентом реактивности, что позволяет провести его пуск из холодного состояния. Во время пуска первого контура циркуляционный насос работает с минимальным расходом, необходимым для надежной работы гидродинамических подшипников. После прекращения циркуляции через нижний гидравлический затвор с помощью подачи азота под колпак можно начинать снижение концентрации борной кислоты в первом контуре подводом в него чистой воды. После достижения критического состояния и нагрева воды до температуры 80—100°С расход воды на выходе из активной зоны будет равен расходу воды через циркуляционный насос азот из-под колпака нижнего гидравлического затвора удаляется, и первый контур постепенно переводится на номинальные параметры.  [c.104]


Достоинства турбонасосов (рис. 2.11)—небольшие габариты привода и отсутствие каких-либо вспомогательных контуров, поскольку при использовании в кипящих реакторах они могут устанавливаться непосредственно внутри сепаратора насыщенного пара. Основными узлами турбонасоса являются проточная часть 1 собственно насоса, приводная турбина 6 и подшипниковые узлы. 2, 9 и 10. В качестве подшипниковых опор в турбонасосе применяются гидростатические или гидродинамические подшипники, работающие на перекачиваемой среде. Особенностью такого насоса является возможность работы в широком диапазоне частот вращения ротора например, от 1000 до 8000 об/мин), при поддержании подачи, оптимальной для данного режима работы ЯЭУ. Однако обеспечение устойчивой работы во всем диапазоне частот вращения накладывает дополнительные требования на конструкцию.  [c.35]

J — патрубок слива протечек 2 — уровень заполнения 3 — рабочий уровень 4 — уровень при остановленном насосе (контур разогрет) 5 — станина 6 — выемная часть насоса 7 — нижний радиальный гидродинамический подшипник S— вал 9 — радиально-осевой подшипник 10 — уплотнение вала 11 — стояночное уплотнение 12 — отвод масла в подшипник  [c.41]

Перечисленные недостатки консольных насосов с гидродинамическими подшипниками исключаются, если встроить в насос замерзающее уплотнение, конструкция которого описана в гл. 3. Для нормальной работы этого уплотнения важно поддерживать температурный реи им его на необходимом (достаточно низком) уровне, определяемом температурой плавления теплоносителя. Прекращение подачи охлаждающей среды может привести к прорыву металла через уплотнение, что совершенно недопустимо. Чтобы уменьшить вероятность выброса металла в помещение или подсос газа в полость насоса при аварийном размораживании уплотнения, насос желательно располагать в точке контура с высотной отметкой, равной максимальному уровню теплоносителя в реакторе, в целях обеспечения наименьшего перепада давления на уплотнении.  [c.42]

Сложный внешний автономный контур и высокая чувствительность гидродинамических подшипников к температурам накладывают ограничения для широкого их применения.  [c.118]

Вал 3 насоса жестко соединен с ротором электродвигателя муфтой 7 и таким образом образована единая сборка, вращающаяся в трех подшипниках. Критическая частота вращения вала в 1,25—1,3 раза превышает фактическую частоту вращения. В качестве нижней направляющей опоры в насосе применен гидродинамический подшипник скольжения 4, смазываемый и охлаждаемый водой, циркуляция которой осуществляется по автономному контуру посредством специального вспомогательного импеллера. В электродвигателе расположены два подшипника качения с масляной смазкой, один из которых рассчитан на восприятие и осевой нагрузки, передаваемой от насоса через соединительную муфту с помощью кольцевых шпонок. Монтаж и демонтаж муфты осуществляются за счет предусмотренного в ней продольного разъема. В самой муфте между торцами валов предусмотрен зазор 370 мм, позволяющий проводить без демонтажа электродвигателя замену узла уплотнения и подшипника ГЦН.  [c.154]


В насосе предусмотрен автономный циркуляционный контур для поддержания необходимого температурного режима в районе подшипниковых узлов и главного разъема. Контур включает в себя вспомогательное рабочее колесо 2, закрепленное на валу насоса, и холодильник 5. Для осуществления направленного движения охлаждающей воды полость холодильника ограждена кожухом так, что между кожухом и внутренней стенкой выемной части образована застойная зона, уменьшающая теплоотвод от более горячих частей корпуса к главному разъему. Вода к подшипникам после холодильника поступает по каналам и сверлениям в обечайке. Слив после подшипников на всасывание вспомогательного колеса осуществляется по каналам в гидродинамических подшипниках. Для уменьшения отвода тепла от деталей проточной части полость автономного контура отсечена температурным барьером, представляющим собой два экрана, собранных из тонких колец-пластин и образующих застойные зоны.  [c.274]

Классическая гидродинамическая теория трения и смазки, разработанная еще в дореволюционный период, не учитывала ряда явлений, характерных для работы подшипников. Так, она не учитывала часто встречающегося непостоянства нагрузки (пульсирующей нагрузки), конечности длины подшипника, изменения абсолютной вязкости смазывающей жидкости в зависимости от внутреннего давления в слое смазки, которое является переменным по контуру подшипника. В соответствии с этим советскими учеными проведены теоретические исследования и экспериментальные работы по развитию гидродинамической теории трения применительно к указанным частным особенностям (работы П. И. Орлова и А. К. Дьячкова [32, 33]).  [c.11]

Для ГЦН, работающих в контурах высокого давления, имеют место высокие осевые усилия (до 1000 кН), которые в вертикальных насосах могут быть направлены вверх или вниз в зависимости от режима работы. При включении такого насоса возникает большая удельная нагрузка на осевой подшипник, что может привести к его интенсивному нагреву и износу. Кроме того,, отсутствие гидродинамического клина в осевом подшипнике при пуске ГЦН приводит к чрезмерно высоким пусковым моментам, которые уже не могут быть преодолены приводным электродвигателем обычной конструкции. Поэтому с помощью конструкционных мероприятий стараются снизить величину пускового момента. Это достигается, например, с помощью впрыска под высоким давлением масла между несущими колодками и пятой и обеспечения за счет этого необходимой для легкого пуска смазочной пленки. Применяется также гидравлическая или электромагнитная разгрузка.  [c.119]

Нижний радиальный подшипник (см. рис. 2.7) может быть гидростатическим, питаемый с напора рабочего колеса насоса или от специальной внешней системы. Гидростатический подшипник, питаемый с напора насоса, обеспечивает надежную работу, но снижает объемный КПД. Практика показывает, что пуски и остановки для такого гидростатического подшипника не опасны, если использовать подходящие материалы для несущих поверхностей (например, сталь 20X13 с термообработкой рабочих поверхностей до HR 40. .. 48). Гораздо опаснее для гидростатического подшипника переходные режимы (особенно в пусконаладочный период), связанные с изменением давления в контуре циркуляции и возможным вскипанием воды в корпусе ГЦН. В первую очередь это относится к АЭС с кипящими реакторами. Для таких реакторов внешний контур питания гидростатического подшипника следует считать обязательным. Нижний радиальный подшипник (а в некоторых схемах и верхний) может быть гидродинамическим. Для этого типа подшипника очень остро стоит проблема износостойких материалов, работающих при температуре теплоносителя 270—300 °С и значительных удельных нагрузках. В целях облегчения условий работы подшипника в схему ГЦН вводится дополнительный контур охлаждения. Схема одного из возможных вариантов питания гидродинамических подшипников охлажденной контурной водой показана на рис. 2.9. С напора вспомогательного рабочего колеса 4 автономного контура охлаждения вода проходит через специальный змеевиковый холодильник 5 и попадает в полость осевого подшипника 6. Далее по специальным каналам вода поступает в верхний 11 и нижний 12 гидродинамические подшипники и сливается на всасывание рабочего колеса автономного контура. Питание гидродинамических подшипников может осуществляться и водой от постороннего источника.  [c.33]


Известные материалы, применяемые в нижнем гидродинамическом подшипнике, питаемом водой первого контура, нетермостойки, поэтому для такого подшипника необходим автономный контур охлаждения в целях поддержания требуемой температуры рабочей среды (не более 100 °С). Поскольку в этих ГЦН уже имеется в наличии контур питания уплотнения (см. рис. 4.8, 4.12) то вполне естественно в него включить и контур охлаждения гидродинамического подшипника, циркуляция воды в котором обеспечивается рабочим колесом ГЦН. Схема проста и надежна, на должна быть обеспечена высокая эффективность автономного, холодильника.  [c.118]

Фирма KSB в циркуляционном насосе RSR применила перевернутую схему охлаждения гидродинамического подшипника (рис. 4.16). Запирающая вода сначала подается в гидродинамический подшипник, затем под гидростатическое торцовое уплотнение 5 и в виде организованных протечек возвращается в систему запирающей воды. В этом случае должен быть достаточно эффективен термобарьер 1. Иначе возможно захолаживание первого контура протечками по зазору между валом 4 и термобарьером 1.  [c.118]

Насосы реактора БН-600 первого и второго контуров принципиально отличаются параметрами и конструкцией проточной части [9]. Насос первого контура (рис. 5.25) —заглубленный, устанавливается в кессон 7 реактора. Рабочее колесо 3. закреплено на нижней консоли вала 6, вращающегося в двух радиальных подшипниках верхнем — масляном гидродинамическом, нижнем 5 — гидростатическом с обратнощелевым дросселированием, работающем на натрии. Осевая нагрузка в насосах воспринимается масляным осевым гидродинамическим подшипником 15.  [c.167]


Смотреть страницы где упоминается термин Контур МПЦ гидродинамических подшипников : [c.34]    [c.140]   
Главные циркуляционные насосы АЭС (1984) -- [ c.33 , c.118 , c.138 ]



ПОИСК



Да гидродинамическое



© 2025 Mash-xxl.info Реклама на сайте