Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мостовые схемы для измерения

Мостовые схемы для измерения 8 и tg 6  [c.42]

Мостовые схемы для измерения в и tg д  [c.58]

Характеристики мостовых схем для измерения температуры (), скорости потока (а) и теплопроводности (X)  [c.166]

Рис. 103. Мостовая схема для измерения разности температур с компенсационным сопротивлением Рис. 103. <a href="/info/305510">Мостовая схема</a> для измерения <a href="/info/31044">разности температур</a> с компенсационным сопротивлением

Рис. 104. Мостовая схема для измерения с элементом компенсации Рис. 104. <a href="/info/305510">Мостовая схема</a> для измерения с элементом компенсации
МОСТОВЫЕ СХЕМЫ ДЛЯ ИЗМЕРЕНИЯ е и tg б  [c.34]

И. м. постоянного тока. Мост Уитстона является простейшей и наиболее употребительной мостовой схемой для измерения сопротивлений не ниже 1 Й. Цепь тока разветвляется на две ветви, причем каждая состоит из двух сопротивлений (фиг. 5). Гальванометр подключен к точкам соединения двух сопротивлений каждой ветви (диагональ моста). Если И. м. уравновешен, то ток в гальванометре равен нулю и между точками С и В нет напряжения. При этом условии падения напряжения между точками и С и точками А и равны, также равны падения напряжения между точками С и В п В п В. На основании этих соображений составляем два ур-ия  [c.555]

Решающее устройство, позволяющее исключать влияние уравновешивающих грузов, помещаемых в одну из плоскостей исправления детали, на показания прибора для другой плоскости исправления, в обоих станках выполнено по мостовой схеме. Для большинства типов деталей остаточное влияние после настройки решающего устройства не превосходит 2—3%. Решающее устройство настраивается по предварительно уравновешенной методом последовательного приближения детали, после чего измерение неуравновешенности аналогичных деталей осуществляется за один пуск.  [c.318]

Большим преимуществом схемы моста перед компенсационной схемой является также возможность быстрого измерения температуры. Если в компенсационной схеме для определения Гх требуется измерить две величины — воп е , то при измерении по мостовой схеме для получения точного значения сопротивления термометра достаточно одного измерения. Это особенно важно три быстром изменении температуры.  [c.97]

Измерение осевой деформации осуществлялось с помощью экстензометра, которым снабжена испытательная машина, а для замеров деформации диаметра образца использовался электромеханический тензометр конструкции ВНИИГС, общий вид и принципиальная схема которого приведены на рис. 4.2. Тензометр имеет две ножки 1 и 2 с призмами ножка 1 неподвижна. Призмы ножек охватывают наружный диаметр образца. При изменении диаметра подвижная ножка 2 поворачивается вокруг оси и через рычаг 3 изгибает пластину 4 с наклеенными на нее тензорезисторами 5. Тензорезисторы включены в мостовую схему. Для компенсации реакции пластины 4 при ее изгибе служит пружина 6 при повороте ножки 2 усилие на шпиле 7 от пружинь 120  [c.120]


Крестообразный модуль 6 датчика, предназначенный для измерения компонент F , и Му, не отличается от рассмотренного ранее (см. рис. 2.10), а основные выражения для определения проекций вектора сил и моментов на связанную систему координат аналогичны уравнениям описанной выше конструкции. Особенностью данного датчика является реализация этих математических зависимостей на уровне мостовых измерительных схем (рис. 2.11, б). А именно, пары тензорезисторов, образующие плечи мостовой схемы, выходной сигнал которой пропорционален, например, компоненте (Ri, Гх Ru, Го), взяты с поверхностей противолежащих упругих элементов крестообразной пружины, ориентированных вдоль оси Y. Аналогичным образом из полумостов, наклеенных на противолежащих упругих элементах, образованы измерительные мостовые схемы для выделения остальных компонент F. и Му.  [c.42]

Конструкция выполнена в виде двух упругих элементов 2, 3 балочного типа квадратного сечения и упругого элемента 1 прямоугольного сечения с прорезями. На упругих элементах датчика наклеены фольговые тензорезисторы, соединенные в мостовые схемы. Для усиления сигналов тензорезистивных мостов используются интегральные усилители, выполненные по схеме модулятор—демодулятор. Экспериментальный образец датчика такой конструкции обеспечивает измерение компонент сил в диапазоне 2—100 Н и моментов в диапазоне 0,02—1 Н-м. Суммарная погрешность датчика не превышает 5 % в диапазоне температур +(5- 40) "С.  [c.44]

Наличие паразитных емкостей в мостовой схеме вызывает в большинстве случаев заметную погрешность измерения tg o. Обычно для компенсации этих емкостей либо используют вспомогательную ветвь с регулируемыми сопротивлениями, либо между экраном и землей включают вспомогательный источник напряжения. Значение и фазу этого защитного напряжения регулируют так, чтобы напряжение на паразитной емкости равнялось нулю. Однако можно исключить влияние паразитных емкостей и С g (рис. 3-4) путем двукратного уравновешивания моста при двух значениях постоянного сопротивления Ry и R3.  [c.53]

Для измерения тензометрического эффекта ввиду его малости и необходимости компенсировать температурную погрешность чаще всего используют мостовые схемы.  [c.221]

Вольтметры с усилителями часто имеют выход для подключения самопишущих измерительных приборов. Благодаря этому могут быть использованы также и самопишущие приборы с низким входным сопротивлением для регистрации результатов измерения с высоким сопротивлением источника. Высокоомные универсальные приборы, применяемые в электротехнике для измерения напряжений, токов и сопротивлений, тоже могут применяться для измерения потенциала. Универсальные приборы обычно имеют измерительный механизм магнитоэлектрической системы с вращающейся рамкой, подвешенной на ленточных растяжках. Они прочны, нечувствительны к действию повышенной температуры и имеют линейную шкалу. При времени успокоения стрелки не более 1 с, как требуется для измерения потенциалов, максимальное внутреннее сопротивление таких приборов составляет 100 кОм на 1 В. Поскольку сопротивление электродов сравнения большой площади обычно не превышает 1 кОм, с применением таких приборов возможны достаточно точные измерения потенциалов. Однако при измерениях потенциала в высокоомных песчаных грунтах или на мощеных мостовых (малая диафрагма) сопротивление электрода сравнения может значительно превышать 1 кОм. Погрешности измерения, получаемые в таких случаях при применении универсальных приборов, могут быть устранены с применением схемы, принцип которой показан на рис. 3.6 [9]. Параллельно измерительному прибору при помощи кнопочного выключателя S подключается сопротивление Ri, одно и то же для соответствующего диапазона измерений. При допущении, что внешнее сопротивление меньше внутреннего Ra[c.92]

Поскольку гальванометр магнитоэлектрической системы реагирует на внешние, возможно имеющиеся в грунте напряжения постоянного тока, перед ним включается конденсатор. Посторонние напряжения переменного тока с частотой 16% или 50 Гц тоже не могут повлиять на результат измерения, поскольку рабочая частота измерительных мостов переменного тока при схеме с вибропреобразователями составляет 108 Гц, а по схеме с транзисторами — около 135 Гц. Первая высшая гармоника в мостовой схеме выпрямителя станции катодной зашиты (100 Гц) обычно вызывает заметные биения. Однако при не слишком больших амплитудах и в этом случае еще возможно выявление нуля путем настройки одинаковых отклонений по обе стороны от нулевой точки. Некоторые характеристики приборов для измерения сопротивления представлены в табл. 3.2. В принципе все четырехполюсные приборы для измерения сопротивления могут быть использованы при закорачивании обеих клемм Ei и также и для измерения сопротивлений растеканию тока в грунт.  [c.114]


Регистрация диаграмм циклического деформирования осуществляется на самопишущем приборе для двухкоординатной записи. Измерительные датчики включены в мостовые схемы двух автономных мостов диаграммного прибора. Масштаб записи 275 X X 275 мм, основная погрешность регистрирующей части прибора не превышает 1 %, чувствительность 0,1 % диапазона измерений.  [c.224]

Тензодатчики сопротивления, наклеенные на поверхность упругого элемента и соединенные между собой по мостовой схеме, подключены к электронному измерителю статических деформаций типа ИСД-3. Конструкция упругих элементов для измерения растягивающих усилий будет рассмотрена ниже.  [c.119]

Для изучения изменения дислокационной структуры в никеле в процессе ИП проведены измерения ФМР поликристаллического никеля при трении с конструкционной бронзой в поверхностноактивной среде (глицерин) и инактивной (масло индустриальное И-20А). Исследования ФМР проводили на спектрометре, который представлял собой волноводную мостовую схему, построенную на ферритовом циркуляторе с отражательным прямоугольным резонатором. Образцы в форме дисков с хвостовиками со сформированной предварительно поверхностью отжигали в вакууме 2,66 х X 10 Па (2-10 мм рт. ст.) при 800° С в течение 2 ч. После отжига образцы испытывали на машине трения АЕ-5.  [c.30]

Рис, 10,128, Индуктивный датчик для измерения перемещений порядка до 2-3 мм. При перемещении в процессе измерения стержня i с закрепленными на нем катушками 2 относительно кольцевых выступов в отверстии корпуса 1 изменяется индуктивное сопротивление катушек, что приводит к изменению тока в измерительной цепи мостовой схемы, регистрируемого прибором.  [c.634]

Основными измерительными схемами индуктивных приборов для линейных измерений являются симметричные мостовые схемы переменного тока, работающие в режиме отклонений и в равновесном режиме. Наибольшее распространение получили схемы первого типа (рис. 58).  [c.109]

Мосты переменного тока н мостовая схема для измерений баллистическим методом. В большинстве работ по адиабатическому размагничиванию метод, в котором используется переменный ток, более удобен, чем баллистический метод. В первом методе может быть достигнута более высокая точность и произведено большее число измерений в единицу времени. Недостаток этого метода заключается в том, что вся аппаратура, расположенная внутри криостата, должна быть изготовлена из неэлектронроводного материала, поскольку во всех металлических деталях возникают токи Фуко, которые влияют на показания моста, особенно на значения /" (см.  [c.456]

Следующие примеры показывают применение мостовых схем для измерения величины емкости. В главе 9 содержится более подробная информация по этой теме. Мост Де Сьюти (Рис. 9.9а) определяет значение емкости, сравнивая его со значением другой известной емкости, однако здесь на точность измерений оказывает большое влияние коэффициент мощности конденсатора, из-за этого во многих случаях применение этой мостовой схемы сильно ограничено. Мост Шеринга (Рис. 9.9в) используется для измерения емкости и сопротивления конденсатора, и следовательно, для определения диэлектрических потерь. Мост Вина (Рис. 9.96) имеет целый ряд применений. Он может быть использован для измерения величины емкости, если известна частота применяемого источника питания, и, наоборот, такая мостовая схема может применяться для определения частоты, если значение емкости известно. Мост Вина также может употребляться в качестве средства подавления какой-то определенной частоты.  [c.233]

Существует много типов мостов переменного тока, далее будут рассматриваться мосты, наиболее часто применяемые для измерения емкости и индуктивности. Смотрите главу 9 для более гюдробного изучения теоретических основ построения мостовых схем. Для определения условия баланса мостов могут использоваться следующие детекторы наушники (с полосой пропускания 250 Гц...З кГц), вибрационные гальванометры (свето-  [c.232]

Описание большого числа мостовых схем можно найти в книге Хаге [96]. В настоящей главе мы ограннчпваемся только кратким обсуждением моста переменного тока Андерсона для измерения самоиндукции [63, 97], а также баллистического моста и моста переменного тока Хартсхорпа ([31], стр. 36 [55, 56], стр. 12  [c.457]

Определение диэлектрической проницаемости и тангенса угла диэлектрических потерь при частотах свыше 100 Гц имеет особенности, связанные с ростом влияния краевых эффектов, емкостью образца относительно земли, индуктивностью и емкостью подводящих проводов. Большое значение приобретают также собственные начальные параметры измерительных схем. Для исключения влияния этих факторов при измерениях используют специальные ячейки, методы измерения с двойным, а иногда и с тройным уравновешиванием мостовых измерителей. Могут быть использованы трехэлек тродные ячейки, но поскольку на частоте 1000 Гц и выше охранные электроды на образцах уже не дают требуемого эффекта, то преимущественно применяют ячейки с системой двух электродов, а также двухэлектродные ячейки с дополнительным подвижным электродом. В ряде случаев для измерения применяются бесконтактные системы.  [c.62]

Сушественным отличием от манганина является высокая термоЭДС константана в паре с медью, а также с железом его коэффициент термоЭДС в паре с медью составляет 44—55 мкВ/К. Это является недостатком при использовании константановых резисторов в измерительных схемах, так как при наличии разности температур в местах контакта константановых проводников с медными возникают паразитные термоЭДС, которые могут явиться источником ошибок, особенно при нулевых измерениях в мостовых и потенциометрических схемах. Однако константан с успехом может быть применен при изготовлении термопар, служапщх для измерения температурь , если последняя не превышает 700°С.  [c.36]


В тензорезисторных преобразователях давления Кристалл и Сапфир избыточное давление вызывает деформацию сапфировой мембраны и выращенного на ней тензорезистора — пленки кремния, включенного в мостовую схему. Деформация мембраны приводит к изменению электрического сопротивления пленки кремния и появлению электрического сигнала в йЫходной диагонали моста, который усиливается до о—5 мА. Выпускаемые преобразователи класса 0,6 1,0 1,5 служат для измерения избыточных давлений до 60 МПа.  [c.68]

Положение сильфона контролируется магнитным датчиком, который позволяет без труда заметить смещение штока 4 на 0,5 j/.m. Поправка на растяжение сильфона меньше, чем погрешность обзразцового прул< инного мано-мера для измерения давления на газовой стороне системы. Платиновые проволочки включаются в разные плечи рабочей мостовой схемы. Сопротивление платиновой проволоки находится из условия разбаланса моста, а температура проволоки в момент бурного вскипания лсидкости определяется по градуировочной кривой, построенной по данным предварительных опытов.  [c.304]

СВЧ преобразователи на мостовых схемах широко используются для определения очень малых изменений размеров различных деталей, проверки допусков прецизионных деталей в условиях рабочих вибраций, при балансировке вращающихся объектов, измерении скорости перемещения отра- зкающей радиоволны границы раздела. Так, при измерении скорости для некоторого положения границы раздела с помощью аттенюатора и фазовращателя (КЗ поршня) добиваются баланса моста отсутствия энергии в детекторной секции. В процессе изменения положения границы СВЧ мост разбалансируется. Скорость изменения энергии, поступающей к детектору, пропорциональна скорости перемещения отражающей границы. При смещении границы от первоначального сбалансированного положения на V2 тройник снова будет сбалансирован. Для того чтобы с помощью описывае-  [c.264]

Для измерения импульса силы удара был применен динамометрический способ. Было спроектировано и изготовлено силоизмерительное устройство, которое крепится в основании установки. Принципиальная схема устройства приведена на рис. 61. Цилиндрическая на-ковальная со сферическими торцами свободно перемещается в корпусе, что обеспечивается двумя сегментными подшипниками. Наковальня опирается на упругий динамометр. Удар индентора по сферическому торцу наковальни воспринимается упругим динамометром, который жестко крепится к корпусу силоизмерительного устройства двумя винтами. Динамометр выполнен в виде жесткого кольца, с двух сторон которого по мостовой схеме наклеены четыре терморезистора сопротивлением по 100 Ом каждый и с базой 10 мм. Благодаря жесткости упругих элементов динамометра (он выполнен из  [c.133]

Величина сопротивления вычислялась как среднее арифметическое из шести замеров, каждый из которых состоял в свою очередь из двух измерений, выполненных при взаимно противоположных направлениях тока. Такая методика необходима для исключения возможного влияния термотоков, возникающих в схеме в местах контактов разнородных металлов. Так как во время измерений при прохождении тока возможен нагрев образца, вызывающий дополнительное изменение электросопротивления за счет температурной составляющей, то были проведены измерения температуры образца во время длительного пребывания его под током. Оказалось, что температура повышалась в продолжение 10—15 мин на 0,1°, оставаясь затем постоянной во все время пребывания образца под током. Следовательно, устанавливался стационарный режим теплообмена между внутренними частями образца и поверхностью. Критерием стационарности процесса может служить устойчивость баланса мостовой схемы, которая отсутствует при нестационарном режиме (показания гальванометра измерительной схемы сползают с нулевой отметки). Замеры производились только после стабилизации схемы при устойчивых нулевых показаниях гальванометра. Во время измерений тщательно контролировалась температура (до 0,1°), затем в результаты измерений вносилась соответствующая поправка, чтобы привести все замеры к 20 °С.  [c.44]

Важность повышения амплитуды выходных импульсов цепи подавления помех объясняется тем, что во время измерения мостовая схема уравновешивается, т. е. напряжение неравновесия (рис. 3, а) приводится к нулю. Для последнего варианта цепн подавлении низкочастотной помехи в выражении (8) R==Ri. Значение можно выбрать весьма малым, вплоть до такого, когда его роль играет прямое сопротивление ключа S.i. Это приводит к уменьшению длительности / . длительности питающих мостовую цепь импульсов и в результате несколько повышает быстродействие.  [c.97]

Фирма Lebow (США) выпускает динамометры для одновременного измерения осевой силы и крутящего момента. Эти динамометры устанавливают на испытательных машинах фирм Instron (Англия) и MTS (США). Измерения осуществляют с помощью тензорезисторов сопротивления, включенных в мостовые схемы.  [c.45]

Преобразователь типа ПА-1 выходных сигналов датчиков силы с тензо-резисторами предназначен для использования в системах автоматического регулирования и содержит источник стабильного напряжения 6 В для питания мостовой схемы с тензорезисторами сопротивлением 100—400 Ом, усилитель, обеспечивающий выходной сигнал ГСП, равный 1 В, при чувствительности датчика силы не мепес 1 мВ/В. Величина основной погрешности 1 % может быть снижена до 0,3 %, если в процессе измерения допустима кор-  [c.381]


Смотреть страницы где упоминается термин Мостовые схемы для измерения : [c.298]    [c.6]    [c.8]    [c.136]    [c.163]    [c.41]    [c.352]    [c.201]    [c.125]    [c.220]    [c.281]    [c.415]    [c.199]    [c.126]   
Смотреть главы в:

Испытания электроизоляционных материалов  -> Мостовые схемы для измерения

Испытания электроизоляционных материалов  -> Мостовые схемы для измерения



ПОИСК



Бык мостовой

Мостовые схемы измерения сопротивления

Схема мостовая

Схемы измерений



© 2025 Mash-xxl.info Реклама на сайте