Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные стадии движения машины

Основные стадии движения машины  [c.176]

Рис. 91. Основные стадии движения машины Рис. 91. Основные стадии движения машины

Из уравнения следует, что агрегат не может остановиться в момент отключения движущих сил, а будет продолжать двигаться, пока вся накопленная в нем кинетическая энергия не будет затрачена на преодоление сил, приложенных к нему в атой стадии движения. Так как в стадии останова скорость исполнительного органа уменьшается, то обычно в целях предупреждения брака приходится прекращать обработку изделий, поэтому в уравнении (9,14), , = 0. Следовательно, кинетическая энергия может быть погашена лишь работой силы вредных сопротивлений, Современные быстроходные агрегаты (машины) накапливают значительную кинетическую энергию, а работа вредных сопротивлений, в основном сил трения в кинематических парах, как правило, невелика. Если не применять специальных мер, то время выбега может быть очень большим. Современные прокатные станы, например, могут двигаться несколько часов после отключения двигателей. В целях сокращения времени выбега в состав агрегата (машины) включают специальные тормозные устройства или переводят электродвигатели на работу в тормозном режиме (электрическое торможение). В этом случае уравнение движения имеет вид  [c.307]

При таком подходе машиностроение не вышло бы из стадии приспособлений (может быть, весьма остроумных), так как не было бы использовано вращательное движение — основное в современных машинах.  [c.151]

В самом деле, разве можно было бы создать современные автоматические машины, если бы их творцы копировали движения рук рабочего Например, было бы возможным создать таким путем современные зуборезные станки, работающие но методу огибания для нарезания зубчатых колес со спиральными зубьями Прь таком подходе машиностроение не вышло бы из стадии приспособлений (может быть, весьма остроумных), ибо не было бы использовано вращательное движение — основное в современных машинах.  [c.56]

Задача синтеза системы привод—ведомый механизм, одна из основных задач теории механизмов и машин, должна ставиться и решаться по-новому на основе использования современных вычислительных алгоритмов и вычислительной техники. Это относится в первую очередь к весьма распространенным системам, в которых применяется гидравлический или пневматический привод линейного или вращательного движения. Что касается выбора оптимальной структуры системы, то на первых стадиях следует опираться на знания и опыт проектировщика, быстро возрастающие в условиях широкого использования диалога человек—ЭВМ, сопоставления различных структур с оптимизированными (а не произвольно выбранными) параметрами, накопления информации о предельных возможностях того или иного варианта.  [c.14]


Исследование движения механизмов с учетом действующих сил часто доставляет значительные трудности, в особенности при проектировании новых машин. Поэтому для приближенного определения параметров движения—перемещений, скорости и ускорения движения звеньев и их точек — на первой стадии исследования не учитывают действующие силы. Такое исследование осуществляется при помощи методов кинематики механизмов, являющейся одним из основных разделов теории механизмов и машин. Для выполнения кинематического исследования механизма должны быть заданы его схема и размеры звеньев, а также функции зависимости, перемещения ведущих звеньев от параметра времени или от других параметров движения.  [c.38]

В процессе течения через фиксированную проточную площадь F поток должен будет проходить ее в такой стадии своего расширения (сжатия), когда скорость его движения и его параметры будут соответствовать значению параметра МР (если в него вместо поперечной площади сечения потока подставить фиксированную площадь F). Такова основная задача теории лопаточных машин при их расчетах на переменных режимах. Следует признать, что предлагаемая расчетная методика вполне согласуется с указанными свойствами лопаточных машин.  [c.22]

В этой главе книги исследуется методами вариационного исчисления ряд задач динамики полета ракет и самолетов с ракетными двигателями, причем выделяемые классы оптимальных движений допускают простые аналитические решения. Влияние малых изменений основных параметров обследуется в линейной постановке аналогично линейной теории рассеивания эллиптических траекторий баллистических ракет (ч. I, гл. III, стр. 265). Учитывая, что для многих преподавателей классической механики излагаемые здесь научные результаты могут представить интерес для самостоятельных исследований, мы даем достаточно ссылок на основные журнальные статьи и монографии. Мы убеждены, что в процессе развития науки и техники вычислительные машины будут решать все более сложные системы дифференциальных уравнений и метод проб, метод сравнения семейств решений можно будет применять к любому числу свободных функций. Однако в вузовском преподавании в стадии формирования интеллекта будущих исследователей и создателей реальных конструкций аналитические решения нельзя заменить численными методами.  [c.142]

Траектория баллистической ракеты с необходимой точностью определяется методами численного интегрирования дифференциальных уравнений движения. Но эта операция может быть проведена лишь при условии, когда уже известны основные пара-.метры ракеты — ее весовые и тяговые характеристики, а найти их значения можно, только располагая необходимыми сведениями о траектории. Возникает замкнутый круг неопределенностей, свойственный начальной стадии проектирования вообще любой машины, а не только ракеты-носителя.  [c.38]

При работе больщинства машин имеют место три основные стадии движения раЭбег, установившееся движение и выбег (рис. 91).  [c.176]

В разработанных к настоящему времени методах комбинированного анализа рассматриваются лишь термодинамические, газодинамические и теплообменные вопросы нестационарного течения рабочего тела при его движении в системе двигателя. Вопросы, связанные с динамикой машины и сопротивлением материалов, не включаются в рассмотрение, и это может иметь в дальнейшем нежелательные последствия. Например, методы комбинированного или раздельного анализа, использованные при проектировании или оптимизации двигателя, могут дать результаты, не совместимые с требованиями, которые следуют из рассмотрения динамики машин или сопротивления материалов. Следовательно, методы комбинированного анализа (или анализа 3-го порядка) должны применяться только на последней стадии предварительной проработки или проектирования, как показано на рис. 3.1, когда все основные требования выполнены. В открытой литературе опубликовано несколько методов комбинированного анализа, которые имеют практически одинаковый аналитический подход и различаются лишь методами решения получаюигейся системы уравнений. В опубликованных работах, на наш взгляд, уделяется чрезмерное внимание выводу основных уравнений, и, хотя само по себе это и полезно, в зависимости от типа публикации зачастую может создаваться впечатление, что эти уравнения получены впервые и применимы исключительно для двигателя Стирлинга. И то и другое почти полностью неверно. Рабочий процесс в двигателе Стирлинга представляет собой нестационарное течение рабочего тела в каналах переменного сечения ири наличии трения и теплообмена. Подобные течения были подробно рассмотрены, например, в  [c.335]



Смотреть страницы где упоминается термин Основные стадии движения машины : [c.74]   
Смотреть главы в:

Теория механизмов и детали точных приборов  -> Основные стадии движения машины



ПОИСК



Изн стадии

Машина движение



© 2025 Mash-xxl.info Реклама на сайте