Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные электрические величины и единицы

ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ВЕЛИЧИНЫ И ЕДИНИЦЫ  [c.24]

Для (Построения Международной системы единиц, охватывающей все основные разделы физики, выбрано шесть основных величин — длина, масса, время, сила электрического тока, температура и сила света. В разрабатываемой Международной организацией по стандартизации (ИСО) рекомендации Р 31 ПО величинам и единицам предложено ввести седьмую основную величину — количество материи, пропорциональное числу атомов или молекул вещества [14].  [c.41]


При изучении механических явлений достаточно ввести только три независимые основные единицы измерения—для длины, массы (или сипы) и времени. Этими единицами можно обойтись также и при изучении тепловых и даже электрических явлений. Из физики известно, что размерности тепловых и электрических величин можно выразить через L, М и Т. Например, количество теплоты и температура имеют размерность механической энергии. Однако на практике во многих вопросах термодинамики и газовой динамики принято выбирать единицы измерения для количества теплоты и температуры независимо от единицы измерения механической энергии. Для измерения температуры единицей служит градус Цельсия, для измерения количества теплоты—калория. Эти единицы измерения устанавливаются опытным путём, независимо от единицы измерения для механических величин.  [c.17]

Значительно более общая система единиц была создана К.Ф. Гауссом (1832 г.). Приняв в качестве основных единицы длины (миллиметр), массы (миллиграмм) и времени (секунда), Гаусс создал абсолютную систему единиц , в которую наряду с единицами механических величин входили единицы всех электрических и магнитных величин, которые в то время фигурировали в физике.  [c.52]

Международная система единиц по ГОСТ 9867—61 введена с 1 января 1963 г. Эта система связывает единицы измерения механических, тепловых, электрических, магнитных и других величин. В Международной системе единиц приняты шесть основных единиц — метр, килограмм, секунда, ампер, кельвин, моль, кандела две дополнительные единицы — радиан и стерадиан и 25 важнейших производных единиц (табл. 1-1). Более полные данные fo единицах Международной системы,применении единиц других систем и внесистемных единиц приведены в ГОСТ по отдельным видам измерений ГОСТ 7664—61 Механические единицы , ГОСТ 8550—61 Тепловые единицы , ГОСТ 8033—56 Электрические и магнитные единицы , ГОСТ 7932—56 Световые единицы , ГОСТ 8849—58 Акустические единицы .  [c.5]

Признание и распространение теории электромагнетизма, созданной Максвеллом в 1860—1865 гг., привело к пониманию невозможности свести электрические и магнитные явления к механике. Возникает стремление строить системы электрических н магнитных единиц не на трех, а на четырех основных единицах, добавляя к единицам длины, массы и времени еще и единицу какой-либо электрической или магнитной величины.  [c.15]


Физические величины и их единицы с качественной стороны характеризуются так называемой размерностью. Каждой из основных величин приписывают свою особую, независимую от других размерность. Размерность длины обозначают символом L, размерность массы— М, времени — Т, силы электрического тока—/, термодинамической температуры — 0, количества вещества — N, силы света — I.  [c.21]

Описанные взгляды на число и выбор основных единиц и на смысл размерности, несомненно, подкреплялись существованием множества различных систем единиц электромагнетизма. В одних из этих систем было три, а в других — четыре основные единицы. В одних системах основной единицей была абсолютная магнитная проницаемость вакуума, в других — абсолютная диэлектрическая проницаемость вакуума, в третьих — единица силы электрического тока и т. д. Явно различные физические величины в некоторых из систем имели одну и ту же размерность, и наоборот, размерность одних и тех же величин в разных системах оказывалась различной.  [c.114]

Новая система единиц основана на шести основных величинах — длине, массе, времени, температуре, электрическом токе и силе света.  [c.12]

Согласно системе СИ основными единицами измерения электромагнитных величин являются метр, килограмм, секунда и ампер. Построенная на этих единицах система электромагнитных величин называется МКСА (см. табл. 1.18 на стр. 19). Систему единиц МКСА обычно применяют при написании уравнений электромагнитного поля в рационализированной форме. Рационализация уравнений электромагнитного поля имеет своей целью исключение множителя 4я из наиболее важных и часто применяемых уравнений. В системе МКСА при рационализированной форме уравнений электромагнитного поля электрическая е и магнитная Цо постоянные принимаются равными  [c.21]

Выбрав в качестве основных единиц миллиметр, миллиграмм, секунду, Гаусс построил систему единиц магнитных величин, получившую название абсолютной системы единиц. В 1851 г. Вебер распространил систему Гаусса на область электрических величин. В системе Гаусса электрические и магнитные величины выражены через длину, массу и время.  [c.19]

Из определения силы тока как физической величины видно, что единица силы тока равна единице количества электричества, проходящего через поперечное сечение проводника в единицу времени. Поэтому естественно было бы принять за основную электрическую единицу некоторый заряд, например, равный заряду электрона или определенного числа электронов. Однако в настоящее время нет возможности осуществить с достаточной точностью эталон, опирающийся на такое определение. Вследствие этого пришлось отказаться от единицы количества электричества как основной электрической единицы и принять в качестве таковой единицу силы тока — ампер.  [c.57]

В области средств измерения электрических и магнитных величин имеется только одна основная единица — ампер. Через ампер и единицу мощности — ватт, единую для электрических, магнит-  [c.76]

Частотный диапазон применения различных групп магнитомягких материалов в значительной степени определяется величиной их удельного электрического сопротивления. Чем оно больше, тем на более высоких частотах можно использовать материал. Это объясняется тем, что при малых значениях удельного сопротивления с повышением частоты могут недопустимо возрасти вихревые токи и, следовательно, потери на перемагничивание. В постоянных и низкочастотных (до сотен герц и единиц килогерц) полях применяют металлические магнитомягкие материалы, к которым относятся технически чистое железо (низкоуглеродистые электротехнические стали), электротехнические (кремнистые) стали и пермаллой — железоникелевые и железо-никелькобальтовые сплавы. На повышенных и высоких частотах в основном применяют материалы, удельное сопротивление которых соответствует значениям, характерным для полупроводников и диэлектриков. К таким материалам относятся магнитомягкие ферриты и магнито-диэлектрики (см. гл. 30). Иногда на повышенных частотах и особенно при работе в импульсном режиме (см. гл. 31) применяют также металлические материалы тонкого проката (до нескольких микрометров).  [c.287]


Сейчас государственные эталоны имеются во всех важнейших областях измерений, наиболее широко применяемых в народном хозяйстве страны. Это государственные эталоны единиц длины, массы, температуры, времени, силы света и электрического тока, т. е. единиц основных физических величин. Государственные эталоны созданы и для таких областей измерений, как измерения силы, давления, ряда электрических и магнитных величин, параметров оптических, ионизирующих излучений и др.  [c.152]

Международная система единиц измерений содержит основные и дополнительные единицы. Система универсальная, так как затрагивает измерения всевозможных величин механических, тепловых, световых, электрических, акустических и магнитных. Основными единицами измерения установлены метр (м) —для измерения длины килограмм (кг) — для измерения массы вещества, секунда (се/с) —для измерения времени градус Кельвина (° К) — для измерения термодинамических температур ампер (а) —для измерения силы электрического тока свеча св) — для измерения силы света и др.  [c.200]

Как мы уже говорили выше, можно считать, что молекулы, составляющие вещество, ведут себя в поле падающих волн подобно диполям. При этом все излучаемые диполями волны действуют па любой другой диполь с эффективной силой и определяют среднее измеряемое поле. Предположим, что диполи равномерно распределены по среде, и среднее значение их электрического момента в единице объема Р будем рассматривать как основную величину, На самом же деле распределение молекул в среде никогда не бывает совершенно равномерным (т. е. имеются флуктуации плотности) и, следовательно, электрический момент отдельных частиц флуктуирует около среднего значения. Возникающие явления настоящая теория может объяснить, проводя расчеты несколько дальше, т. е. рассчитывая не только средние величины, но и их среднеквадратичные отклонения. Подобные расчеты важны для некоторых проблем, например для объяснения голубого цвета неба, впервые данного Рэлеем ). Но такое распространение теории здесь провести невозможно ).  [c.106]

В создании практической системы принимал непосредственное участие крупнейший русский физик Александр Григорьевич Столетов. Система строилась на двух основных электрических единицах. Механические единицы в качестве основных в нее не входили. Выступая на международном конгрессе электриков в Париже в 1881 г. при обсуждении задачи создания практической системы электрических единиц, А. Г. Столетов предложил и обосновал принятие за одну из основных единиц этой системы 1 ом (единицу электрического сопротивления, по величине равную 10 абсолютных электромагнитных единиц сопротивления).  [c.133]

Международная система единиц построена на шести основных единицах (метр, килограмм, секунда, ампер, градус Кельвина, свеча) и двух дополнительных угловых единицах (радиан, стерадиан). Три первые основные единицы позволяют образовать производные единицы для всех механических величин, а каждая из трех остальных единиц дает возможность образовать производные единицы для величин, не сводимых к механическим явлениям, ампер — для электрических и магнитных величин, градус Кельвина — для тепловых величин, свеча — для величин в области фотометрии.  [c.9]

Основные единицы электрических и магнитных величин приведены в табл. I.  [c.107]

Ток высокой частоты, подводимый к трубной заготовке индукционным или контактным методом, вследствие эффекта близости стягивается па стороны кромок, обращенные друг к д )угу, и быстро разогревает тонкий слой металла до плавления. Расплавленный металл выдавливается при осадке в сварочных валках вместе с окислами, образуя наружный и внутренний грат. Минимальное количество расплава определяется надежностью удаления загрязнений. Увеличение глубины прогретого слоя приводит к росту потребляемой мощности, возрастанию объема грата и снижению устойчивости тонких кромок при осадке в сварочной клети. Основными параметрами сварки являются длина кромок, увеличивающаяся с ростом их толщины и диаметра трубы и находящаяся в пределах 20—200 мм, угол схождения кромок, равный 1—6 , и величина осадки. Электрический режим характеризуется частотой тока и расходом энергии на единицу длины (м) и толщины трубы (.мм).  [c.214]

Основные светотехнические величины и единицы их измерения. Световой поток (обозначение Ф). Подводимая к телам тепловая или электрическая энергия обычно преобразуется в электромагнитное излучение. Видимая часть такого излучения, т. е. лучистый поток, который воспринимается органом зрения человека как свет, принято называть световым потоком. Другими словами, световой поток — это мощность лучистой энергии, оцениваемая по световому ощущению, которое она производит на средний (среднестатический) человеческий глаз (орган зрения).  [c.201]

Учитывая названные выше документы, в книге в качестве основной принята Международная система единиц (СИ). Однако при изложении единиц электрических и магнитных величин представилось целесообразным, как и в предыдущих изданиях, начинать с СГС. Такой подход позволяет избежать трудностей методического характера и легче воспринимается студентами. Практически полностью исключена система МКГСС (техническая). Она упоминается лишь там, где излагаются возможные способы построения систем единиц и сравниваются характеристики существующих систем. Сокращение числа внесистемных единиц произведено с известной осторожностью, учитывая живучесть некоторых из них.  [c.8]


Выше ( 1.3) говорилось об условности выбора величин, которые мы Принимаем за основные. Можно при этом, исходя из метрологических соображений точности и воспроизводимости измерений, считать основными одни велшшны, а при построении систем единиц — другие. Эта идея впервые была высказана проф. П.Л. Каланта-ровым, который для описания электрических и электромагнитных явлений предложил систему, в которой основными величинами бьши длина, время, электрический заряд и магнитный поток.  [c.51]

Расходомер переменного перепада давления (рис. 1-1) состоит из трех или, при дистанционной передаче показаний на вторичный прибор, из четырех основных узлов приемного преобразователя (приемника) 1, например сужающего устройства, устанавливаемого внутри трубопровода и создающего перепад давления, величина которого зависит от расхода соединительного устройства 2 (импульсных труб, разделительных сосудов и др.), передающего перепад давления к измерительном у прибору измерительного прибора — дифманометра 3, измеряющего перепад давления на приемнике и обычно градуируемого в единицах расхода или преобразовывающего с помощью первичного прибора-датчика перепад давления в электрический, пневматичеокий или иной сигнал вторичного прибора 4 (электрического, пневматического и т. п.), измеряющего величину сигнала первичного прибора-датчика и градуированного в единицах расхода.  [c.5]

Напишите формулы размерности, выразите через основные и дополнительные единицы СИ и приведите наименования единиц следующих электрических величин 1) частотй 2) энергии работы, количества теплоты 3) мощности 4) количества электричества 5) электрического напряжения, электрического потенциала, разности потенциалов, электродвижущей силы 6) электрического соггротивления  [c.35]

Итак, размерность любо11 из электрических и магнитных величин в четырех системах СГСео, СГС(д.о, СГСФ, СГСБ одинакова и совпадает с их размерностью в МКСА и Международной системе. Различие же написаний размерности в этих системах, включая и дробность показателей в некоторых из них, обусловлено различием в них основных величин и их единиц (ео, Цо. Франклин, бис, ампер).  [c.108]

Международная система единиц измерений физических величин—единая универсальная система. Она свя-зызает единицы измерения механических, тепловых, электрических, магнитных и других величин. В состав системы входят шесть основных единиц (метр, килограмм, секунда, ампер, градус Кельвина, свеча), две дополнительные (радиан и стерадиан) и 27 важнейших производных единиц из различных областей науки (табл. 1.1). В государственных стандартах СССР применяется понятие размера единицы, являющегося количественной мерой физической величины, содержащейся в единице измерения. Размер производных единиц определяется законами, связывающими физические величины, и выражен через размер основных или других производных единиц. Например, единица силы ньютон (н) установлена на основе второго закона Ньютона она равна силе, которая сообщает ускорение 1 м сек массе I кг. При выборе размера соблюдается в основном условие когерентности (связности) системы в уравнениях, определяющих единицы измерения производных величин, коэффициент пропорциональности должен быть величиной безразмерной и равен единице.  [c.9]

ЭЛЕКТРИЧЕСКИЕ ЕДИНИЦЫ — единицы изме рення электрических величин. ГОСТ НО.МЗ—50 устанавливает применение след, систем 3. е. и виеспстем-пых единиц а) как основной — МКС.Л систе.иы единиц, входящей составной частью в Международную систему единиц (СИ) в соответствии с ГОСТ 9867—(И электрич. и магн. единицы системы МКСА применяются в рационализованной форме (см. Рационализация урач-нений электромагнитного ноля), б) как допускаемо — СГС систе.иы единиц (симметричной), в к-рой Э. е. соответствуют системе СГСЕ, а магнитные — сштеме ( ГСМ в) трех внесистемных единиц измерения энергии электронвольта (эв), килоэлектронвольта (> вс) и мегаэлектронвольта (Мэв) (1 эе = 1,60207 1() 1 > д ис). Важнейшие электрич. единицы (ГОСТ 9867—61) приведены в табл.  [c.445]

Размерности производных физических величин выражаются как произведение степеней величин, выбранных за основные. Для международной системы единиц (СИ), например,— это длина, масса, сила электрического тока, время, термодинамическая температура, количество вещества, сила света. Обозначение из размерностей L, М, Т, I, 0, N и J, соответственно. В механике, где основными являются три величины — длина, масса, время, размерность величины А обозначается как dim X = L , где а, р, у — показатели размерности dim (dimension)—знак размерности (в переводе с латинского dimension —размерность).  [c.30]

Л1еждународные электрические единицы были приняты в 1893 г. III Международным конгрессом электриков и базировались на эталонах, а не на теоретическом определении единиц. Конгресс установил три основные международные электрические величины международный ом, международный ампер, международный вольт. Остальные электрические единицы были определены как производные от них,  [c.49]

В системе СГСМ в качестве основных единиц выбираются сантиметр, грамм (масса), секунда, а за основную единицу для электрических величин принимается магнитная проницаемость. За единицу магнитной проницаемости принимается магнитная проницаемость пустоты ( л.о = 1). Единица силы тока в этой сивтеме является производной и определяется из закона взаимодействия токов (4,46).  [c.131]

Основной макроскопической характеристикой свойств непроводящего вещества (диэлектрика) в статическом электрическом поле является диэлектрическая проницаемость. Известно, что если между пластинками конденсатора поместить диэлектрик, то емкость С конденсатора увеличится С=еСо, где Со — емкость конденсатора при отсутствии диэлектрика между пластинками е—диэлектрическая проницаемость, характеризующая электрические свойства вещества и зависящая от его природы и свойств. Эта величина положительная и больще единицы.  [c.3]

Тем не менее вселенский аспект проблемы фундаменталь-ны с постоянных приобретает в наши дни все большее значение и известность, причем отсутствие определения открывает широчайшие просторы для фантазии составителей различных списков фундаментальных постоянных. Это еще больше затрудняет понимание проблемы учащимися. Приведу некоторые примеры. В [23] можно прочесть Основными или фундаментальными физики считают сегодня девять постоянных величин. Вот они скорость света, постоянная Планка, единица электрического заряда, масса протона, постоянная <1)ерми для слабых взаимодействий, постоянная тяготения, постоянная ббла, средняя плотность вещества во Вселенной и так называемая космологическая постоянная . В список фундаментальных постоянных включается ряд новых констант. Характерно, что авторы [23] не считают и этот список окончательным ...молчаливо предполагается, что другие константы, если они имеются, могут быть выражены через основные. Однако это совсем не так. Сегодая известны еще по крайней мере два кандидата в наш список, характеризующие ядерные взаимодействия, которые выразить через перечисленные константы не удается. Так что список фундаментальных констант в какой-то мере условен .  [c.35]


Системы единиц электромагиитиых величии. Известны два способа построения систем электрических и магнитных величии на основе системы СГС на трех основных единицах (сантиметр, грамм, секунда) и на четырех основных един1щах (сантиметр, грамм, секунда и одна единица электрической или магнитной величины).  [c.29]


Смотреть страницы где упоминается термин Основные электрические величины и единицы : [c.24]    [c.118]    [c.276]    [c.91]    [c.20]    [c.199]    [c.286]    [c.23]    [c.325]    [c.6]    [c.115]    [c.107]    [c.466]   
Смотреть главы в:

Справочник автомобильного механика  -> Основные электрические величины и единицы

Справочник автомобильного механика  -> Основные электрические величины и единицы



ПОИСК



Величина основная

Единица величины

Единица основная

Единицы основные

Единицы основных величин

Основные величины

Основные величины и единицы СИ

Электрические единицы



© 2025 Mash-xxl.info Реклама на сайте