Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение осесимметричной задачи теории упругости с помощью интегральных преобразований

Решение осесимметричной задачи теории упругости с помощью интегральных преобразований  [c.297]

Осесимметричная задача теории упругости для неограниченного пространства, содержаш его две плоские круглые щели, где напряженное состояние симметрично относительно средней плоскости, рассматривалась в работах Я. С. Уфлянда (1958), Н. Н. Лебедева и Я. С. Уфлянда(1960). Решение этой задачи строится с помощью выражения компонент через две гармонические функции (представления Папковича — Нейбера) с последующим сведением задачи с помощью преобразований Ханкеля к парным интегральным уравнениям.  [c.385]


Плоские и осесимметричные контактные задачи для физически нелинейного (линейного геометрически) и геометрически нелинейного (гармонического типа) материала исследовались И. В. Воротынцевой [13] совместно с В. М. Александровым [3] и с Е. В. Коваленко [14]. С помощью соответствующих интегральных преобразований задачи сведены к решению интегральных уравнений с нерегулярными разностными ядрами. Структура этих уравнений совпадает со структурой соответствующих уравнений классической теории упругости, а свойства символов их ядер позволяют использовать для решения асимптотические методы больших и малых Л , развитые в работах В. М. Александрова. Влияние нелинейных свойств среды и начальных напряжений на контактную жесткость, функцию распределения контактных напряжений и величину вдавливающей силы в плоском случае исследовано в [13], в осесимметричном случае — в [3,14]. В работах установлено, что начальные напряжения не влияют на порядок особенности на краях штампа, но влияют на проникающую составляющую решения как в области контакта, так и вне ее. Исследованы условия потери внутренней устойчивости среды в зависимости от начальных напряжений. Для ряда конкретных нелинейно-упругих сред построены области эллиптичности линеаризованных уравнений, при переходе через границу которых происходит либо потеря поверхностной устойчивости, либо потеря поверхностной деформируемости, связанные с потерей эллиптичности. В работе установлено, что при стыковке решений, полученных методами больших и малых Л , значение относительной толщины Л, на которой стыкуются эти методы, существенно зависит от параметров начального напряженного состояния среды.  [c.237]


Смотреть главы в:

Теория упругости Основы линейной теории и ее применения  -> Решение осесимметричной задачи теории упругости с помощью интегральных преобразований



ПОИСК



Задача Задачи осесимметричные

Задача упругости

Задачи теории упругости

Интегральные преобразования

К упругих решений

Осесимметричная задача

Осесимметричная задача теории упругости

Осесимметричные решения

Решение задач с помощью ЭВМ

Решение задачи упругости

Решение с помощью ЭВМ

Решения с помощью интегральных преобразований

Теория преобразований

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте