Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частные решении диференциальных уравнений равновесия в напряжениях

Задача об определении напряжений и деформаций в упругом твердом теле под действием данных массовых сил и при заданных поверхностных силах, или при условии, что под действием этих последних поверхность тела принимает заданную форму, приводится к аналитической задаче об определении функций, выражающих проекции смещения. Эти функции должны удовлетворять всем диференциальным уравнениям равновесия в каждой точке внутри тела, а также некоторым условиям на его поверхности. Методы, предложенные для интегрирования этих уравнений, распадаются на два класса. Методы одного из этих дбух классов состоят в том, что сначала разыскиваются частные решения для того чтобы удовлетворить граничным условиям, решение представляют в виде конечного или бесконечного ряда, состоящего из частных решений. Частные решения обычно могут быть выражены через гармонические функции. Этот метод решения можно рассматривать, как обобщение разложения по сферическим функциям или обобщение тригонометрических рядов. Методы второго класса состоят в том, что искомую величину выражают в виде определенного интеграла, элементы которого имеют особые точки, распределенные по поверхности или объему, тот тип решения является обобщением методов, которые Грин ввел в теорию потенциала. К моменту открытия общих уравнений теории упругости, метод рядов был уже применен к астрономическим, акустический проблемам и к проблемам теплопроводности ), а метод решений, имеющих особые точки, еще не был изобретен ). Ламе и Клапейрон ) первые применили метод разложения в ряд к проблемам равновесия упругих твердых тел. Они рассматривали случай тела, ограниченного бесконечной плоскбстЬю и находящегося под давлением, распределенным по какому-либо вакону. Позже Ламе °) рассматривал проблему тела, ограниченного сферической поверхностью и деформируемого данными повер ностными силами. Задача а распределении напряжений в полупространстве, ограниченном плоскостью, в основном совпадает с проблемой передачи внутрь тела действия силы, при-  [c.28]


Другой метод для определения напряжений в теле развился на основе одной заметки Эри (Airy) °). Он заметил, что в случае системы двух измерений fi3 уравнений равновесия тела под действием поверхностных сил вытекает, что компоненты напряжения могут быть представлены как частные производные второго порядка одной единственной функции. Максвелл (Maxwell) ) обобщил этот результат на случай трех измерений, для которого пришлось ввести три функции напряжений . В дальнейшем было обнаружено, что эти функции связаны между собой довольно сложной системой диференциальных уравнений ). В самом деле компоненты напряжений могут быть выражены через компоненты деформации но эти последние,не неза-] висимы вторые производные от компонентов деформации по координатам связаны системой линейных уравнений, которые выражают условия, необходимые для того, чтобы компоненты деформации могли быть выражены, согласно обычным формулам, через производные от трех проекций смещения ), Принимая во внимание эти линейные соотношения, можно составить полную систему уравнений, которым должны удовлетворять компоненты напряжения, и таким образом получить возможность непосредственного определения напряжений без предварительного состааления и разрешения диференциальных уравнений для проекций смещения ). В случае системы двух измерений, получающиеся уравнения имеют довольно простой вид, и мы можем получить много интересных решений.  [c.30]

Постановка задачи. С аналитической точки зрения основная задача теории упругости состоит в решении уравнения равновесия изотропного тела заданной формы й при заданных смещениях или напряжениях на гра[-ницё. Случай, когда на тело действуют массовые силы, приводится при помощи полученного в 130 частного интеграла к случаю тела, деформированного только поверхностными силами на граничной поверхности. Отсюда наша задача заключается в определении таких функций и, V, т, которые внутри заданной границы непрерывны вместе с их производными и удовлетворяют диференциальным уравнениям в частных производных  [c.240]


Смотреть главы в:

Математическая теория упругости Выпуск1 Изд2  -> Частные решении диференциальных уравнений равновесия в напряжениях



ПОИСК



Диференциальное уравнение

К п частный

Напряжения Уравнения

Напряжения Уравнения равновесия

Уравнения равновесия сил

Уравнения равновесия уравнения

Частные решения



© 2025 Mash-xxl.info Реклама на сайте