Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупространство б) случай заданных напряжений на границе

Рассмотрим теперь задачу для полупространства, когда на части границы 5 заданы касательные напряжения и нормальная компонента перемещений, а на оставшейся части — все компоненты напряжений. Посредством наложения частного решения второй основной задачи для полупространства можно перейти к случаю, когда касательные напряжения будут всюду равны нулю, а вне 5 будет обращаться в нуль и нормальная компонента напряжений. Приступим именно к постановке последней задачи, для которой  [c.291]


Решение задачи (П)" для полупространства. Рассмотрим случай, когда на границе упругого полупространства задано значение вектора напряжения Т (дху V) и — (тхз, Т23, Х33), определенного формулой (2.12). Решение  [c.574]

Наряду с контактными задачами, рассмотренные выше смешанные задачи теории потенциала для полупространства могут быть трактованы как задачи о деформации неограниченного упругого тела, ослабленного плоской щелью, занимающей область S (или S ). Действительно, в случае загружения берегов щели, симметричного относительно ее плоскости, достаточно рассмотреть полупространство, на границе которого в области S (или S ) заданы напряжения, а вне ее отсутствуют касательные напряжения и нормальное перемещение. В случае антисимметричного загружения даже для круговой щели возникают некоторые дополнительные трудности, разрешенные в работах В. И. Моссаковского (1955) и Я. С. Уфлянда (1967), причем в последней работе эта задача рассмотрена как частный случай общей смешанной задачи, когда на всей границе полупространства задано нормальное напряжение, в области S (S ) известно касательное смещение, а в области S (S) заданы касательные  [c.35]

В последующие годы развитие методов, основанных на использовании общих уравнений теории упругости и, в частности, функций Папковича — Нейбера, позволило свести многие общие смешанные задачи упругого равновесия полупространства к некоторым классам смешанных задач теории потенциала. При этом в качестве основной из таких задач целесообразно выделить тот случай, когда на всей границе полупространства заданы касательные напряжения, в некоторой конечной области 6" граничной плоскости 2 = 0 известно нормальное перемещение щ = f (х, у), а вне 6 (в области 3 ) задано нормальное напряжение сг = о (х, у). Так, для контактной задачи без трения и пригрузок имеем о = О, а функция / определяется формой основания штампа. Существенно, что смешанные задачи указанного класса в конечном счете могут быть сведены к нахождению одной гармонической функции, заданной в /5", причем в области 8 известна ее нормальная производная. Советскими учеными были разработаны эффективные методы подхода к подобным задачам теории потенциала, позволившие, в частности, дать точные решения некоторых контактных и сходных смешанных задач. Основными из этих методов являются следующие применение сфероидальных и эллипсоидальных координат (А. И. Лурье) построение и использование функции Грина (Л. А. Галин М. Я. Леонов, 1953) метод интегральных уравнений (И. Я. Штаерман В. И. Моссаковский, 1953) использование тороидальных координат и интегральных преобразований (Я. С. Уфлянд, 1956, 1967) метод комплексных потенциалов (Н. А. Ростовцев, 1953, 1957). Мы здесь специально не выделяем метод парных интегральных уравнений, успешно развитый Я. Н. Снеддоном ), поскольку его эффективность существенно проявляется при решении более сложных смешанных задач, о которых речь пойдет ниже.  [c.34]


В работах [7, 8, 20] рассмотрены исключительно задачи распространения волн слабого разрыва. Предполагалось, что нагружение границы полупространства, увеличиваясь монотонно во времени от нуля до некоторого определенного значения, затем монотонно убывает. На плоскости 2 = О можно задать краевые условия для напряжения или же для скорости либо для обеих этих величин одновременно. Случай разрывных во времени нагрузок требует сложного анализа распространения волн сильного разрыва. Довольно большую трудность представляет также определение фронта волны пластической нагрузки, а также волны разгрузки. Фронты этих волн удалось определить лишь приближенным способом.  [c.243]

Так как диаметр перешейка трещины d D, то при изгибе цилиндра перешеек будет полностью находиться в зоне растяжег ния (см. рис. 14). В этом случае величина б упругого перемещения перешейка трещины (см. рис. 14, отрезок ОС ) относительно плоскости ее поверхностей считается достаточно малой, так что направление результирующей силы До практически перпендикулярно к поверхности трещины. Поэтому распределение напряжений в перешейке трещины будет такое же, как если бы такой перешеек вытягивать силой Rg из упругого полупространства. Упругая задача для этого случая состоит в определении напряженного состояния в полупространстве z > О, на границе которого z = О заданы такие смешанные условия  [c.62]

Случай, когда на части границы г < заданы скорости Vг r,0,t), а на части д/< г < оо — напряжения aгir,0,t), рассматривается аналогичным образом и приводит к задаче типа (10.26) для функции G (v). Подобные задачи возникают при рассмотрении динамических задач о вдавливании жестких конических штампов в упругое полупространство.  [c.453]

Формулы (11.1.5) представляют перемещения в упругом теле через четыре гармонические функции. Однако в общем случае в граничных условиях фигурируют комбинации этих функций, и воспользоваться известными решениями задач теории гармонических функций, как правило, не удается. Однако в некоторых случаях задача теории упругости сводится к той или иной задаче для уравнения Лапласа таким образом, удается построить эффективные решения. Одной из таких задач служит задача об упругом полупространстве. Пусть упругая среда занимает область пространства а з [О, °°), плоскость а з = О является границей, на которой заданы те или иные условия. Здесь мы ограничимся изучением наиболее простого случая, когда на граничной плоскости равны нулю касательные напряжения Оаз (а = 1, 2). В этом случае, как будет показано, все перемещения и напряжения выражаются через одну гармоническую функцию. Условимся сохранять индексные обозначения только для осей Xi и Х2, ось Хз, будем обозначать как ось z. Как уже было прппято ранее,  [c.368]


Смотреть главы в:

Математическая теория упругости Выпуск1 Изд2  -> Полупространство б) случай заданных напряжений на границе



ПОИСК



Задали

Задами

Полупространство



© 2025 Mash-xxl.info Реклама на сайте