Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение динамической возможности движения жидкостей (газов)

Широкие возможности решения задач о трении и конвективном тепломассообмене при градиентном течении жидкостей и газов дает теория пограничного слоя. Сопротивление, которое испытывает тело при движении в жидкости или газе, а также интенсивность тепломассообмена между жидкостью или газом и поверхностью тела в значительной степени обусловлены развитием динамического и теплового пограничных слоев. В случае образования на обтекаемой поверхности ламинарного пограничного слоя получены точные аналитические решения уравнений пограничного слоя для некоторого класса задач. Особенно простым классом точных решений этих уравнений являются автомодельные решения, имеющие место в случае, когда скорость внешнего потока пропорциональна степени расстояния х,. измеренного от передней критической точки, а также при плоскопараллельном и осесимметричном течении вблизи критической точки. В других случаях при невозможности получения точных решений надежные результаты дают методы численного интегрирования или приближенного решения интегральных уравнений количества движения, кинетической, тепловой или полной энергии для пограничного слоя. Разными авторами предложены методы преобразования уравнений пограничного слоя в сложных условиях тече-4  [c.4]


Если сделать дополнительное допущение о существовании индивидуальных производных любого порядка по времени от вектора скорости и вектора вихря скорости и о разложимости этих векторов в сходящиеся бесконечные ряды, расположенные по степеням времени, то, пользуясь уравнением динамической возможности движения, можно доказать, что при тех же условиях идеальности жидкости или газа, баро-тропности движения и консервативности поля объемных сил будет справедлива следующая теорема Лагранжа Если в некоторый момет времени частица жидкости не вращается (й == 0), га и в любой последующий момент она не будет вращаться, и, наоборот, если в один какой-нибудь момент частица вращалась, то она не сможет перестать вращаться.  [c.115]

В решении теоретических проблем механики газа большую роль сыграла работа А. А. Фридмана (1922) которая посвяш ена обш,им вопросам гидродинамики сжимаемой жидкости. Фридман дал подробный кинематический анализ движения сжимаемой жидкости и методику отбора из числа кинематически возможных движений тех, которые являются динамически возможными, т. е. удовлетворяют уравнениям гидродинамики. Идеи Фридмана были впоследствии развиты Б. И. Извековым, И. А. Кибелем, Н. Е. Кочи-ным и другими учеными и получили широкое применение при решении различных задач газовой динамики, главным образом в метеорологии.,  [c.312]


Смотреть главы в:

Механика сплошной среды Часть2 Общие законы кинематики и динамики  -> Уравнение динамической возможности движения жидкостей (газов)



ПОИСК



283 — Уравнения жидкости

Возможность динамическая движения

Газы Уравнение движения

Движение газов

Движение тел в жидкости или газе

Движение тел в жидкостях и газах

О газе в движении

УРАВНЕНИЯ движения газов

Уравнение динамическое

Уравнение динамической возможности

Уравнение динамической возможности движения

Уравнения движения жидкости



© 2025 Mash-xxl.info Реклама на сайте