Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Присоединение сверхзвукового потока к поверхности тела

Рассмотрим картину течения перед затупленным телом с центральной иглой. Если длина такой иглы не превышает расстояния до криволинейного отошедшего скачка уплотнения (рис. 6.1.1,а), то ее влияние распространяется лишь на течение за этим скачком и оказывается несущественным. Выдвижение острия иглы 9 за пределы криволинейного скачка уплотнения (рис. 6.1.1,6) приводит к перестройке структуры возмущенного потока, которая характеризуется новой системой скачков уплотнения. Это обусловлено отрывом потока от поверхности иглы, который обычно происходит вблизи основания конического острия (излома). Такой отрыв вызывается большим положительным градиентом давления в пограничном слое на поверхности иглы, обусловленным торможением потока перед телом. В результате отрыва возникает застойная зона 1 с возвратным течением. Оторвавшийся пограничный слой смешивается в зоне 2 с внешним возмущенным течением и присоединяется к обтекаемой затупленной поверхности в области 3. Разделяющие линии тока 8 в зоне смешения образуют поверхность, близкую к конической, пересекающуюся с головной частью в точках Л и 5. В месте присоединения сверхзвуковой поток претерпевает поворот, который  [c.383]


Рассмотрим схему обтекания тела вращения (рис. 10.37) сверхзвуковым невязким потоком газа. Перед таким телом возникает головной конический (присоединенный) скачок уплотнения, простирающийся до места его пересечения (точка К) с прямолинейной волной слабых возмущений (характеристикой), выходящей из точки А сопряжения конуса с цилиндром. За точкой К вследствие взаимодействия с другими волнами, выходящими из той же точки А (и ее окрестности), скачок начнет искривляться. Линии возмущений, отразившись от скачка уплотнения, достигают цилиндрической части корпуса. Результатом этого является выравнивание давления на поверхности тела до значения р-о в набегающем потоке.  [c.509]

Все, или почти все, что сказано выше о выборе схемы течения для чисто дозвуковых течений, относится и к обтеканию тел в случаях, когда в части области течения достигается сверхзвуковая скорость или когда набегающий на тело поток имеет сверхзвуковую скорость. В таких случаях течение осложняется тем, что в потоке могут возникать скачки уплотнения, а при их пересечении—и начинающиеся от линии пересечения скачков внутри области течения поверхности тангенциального разрыва. При пересечении скачков внутри области течения или при образовании присоединенных скачков у передней кромки обтекаемого тела или у линии излома его поверхности, а также и в некоторых других случаях возникает, как уже говорилось ранее, проблема выбора принадлежности уходящих скачков к сильному или слабому семействам формулировка задачи должна содержать условия, позволяющие делать этот выбор.  [c.331]

Задача о присоединении сверхзвукового потока к поверхности тела или слиянии двух частей сверхзвукового потока представляет с ам о стояте л ьный интерес. Кроме того, она оказывается весьма существенной для теории отрывных течений.  [c.86]

Основным предположением классической теории пограничного слоя Прандтля [Prandtl L., 1904] является малость продольных градиентов функций течения в пограничном слое (скорости, температуры) по сравнению с поперечными. Однако существует много задач динамики вязких течений газов при больших числах Рейнольдса, для которых это допущение не выполняется. К ним относятся, в частности, задачи с различного рода локальными особенностями течения в окрестности угловых точек контура тела, мест присоединения зон отрыва и др. В настоящей главе исследуются течения, в которых на коротких расстояниях (например, порядка толщи ны пограничного слоя) давление в сверхзвуковом потоке вблизи поверхности тела изменяется на свой основной порядок. Для этого проводится исследование асимптотического поведения решений уравнений Навье-Стокса в возникающих характерных областях течения и используется известный принцип сращивания асимптотических разложений, представляющих решение в различных областях.  [c.71]


Достаточно хорошо известно, что в областях присоединения оторвавшегося от твердой поверхности сверхзвукового двумерного и осесимметричного потока возможно появление узких областей-пиков теплового потока, намного превышаюш его тепловой поток на окрестной части поверхности. Область отрыва в двумерных течениях представляет собой замкнутую область циркуляционного течения в области присоединения к твердой поверхности подходит разделяюш ая поверхность тока и течение сходно со струей, встречающейся с твердой поверхностью. В трехмерных отрывных течениях на циркуляционное течение накладывается продольное течение (направление которого не изменяется) и вместо замкнутой области образуется незамкнутая область винтового течения. В трехмерных отрывных течениях пики теплового потока экспериментально обнаружены недавно и влияние на их появление параметров Мс , Кеоо, формы и угла атаки тела изучено еще недостаточно. Вместе с тем пики теплового потока представляют большую опасность для летательных аппаратов, так как по величине они могут на порядок превосходить тепловой поток к окрестной части подветренной поверхности и достигать величин, характерных для наветренной поверхности, поэтому изучение возможностей их уменьшения весьма актуально.  [c.272]

Обтекание заостренного тела. Рассматривается задача обтекания тела сверхзвуковым потоком в предположении, что углы наююна поверхности тела к направлению невозмущенного течения всюду малы, а число Маха М1 велико, причем пара. гетр подобия К имеет величину порядка единицы. В этом случае головной скачок уплотнения присоединен к переднему острию (рис. 1) и течение между скачком и телом описывается уравнениями гиперзвукового приближения. Для получения этих уравнений вводится малый параметр (5 = 1/М1 и представление основных величин формируется с учетом предельных формул (5). При это.м надо еще учесть, что вдоль линий тока йу tgвdx или, в рассматриваемом приближении, dy = 5К dx. Поэтому для правильного представления наклонов линий тока необходимо увеличить ординаты у в 1/5 раз. Эти соображения приводят к следующим форму-  [c.309]

Проблема снижения донного сопротивления движущихся тел актуальна в связи с тем, что его величина для большого класса летательных аппаратов составляет 25-30% общего сопротивления. В последние десятилетия ведется активный поиск способов его уменьшения как за счет совершенствования формы летательных аппаратов, так и за счет организации на различных участках его поверхности процессов, приводящих к изменению условий обтекания и, следовательно, аэродинамических характеристик. Одним из перспективных способов снижения донного сопротивления летательных аппаратов является тепломассопровод вблизи донного среза [1, 2]. В [3-5] изучено влияние тепломассоподвода на донное давление осесимметричных тел за счет вдува продуктов сгорания пиротехнических составов в ближний след. При вдуве продуктов сгорания пиротехнических составов через круглое отверстие в донном торце величина прироста донного давления возрастает с увеличением расхода вдуваемого газа до некоторого максимального значения и падает с уменьшением числа Маха. Экспериментально доказано, что в ближнем следе тела вращения, обтекаемого сверхзвуковым потоком (1.15 < Л/ < 3.0), существуют две области (I и III) (фиг. 1), вдув продуктов сгорания пиротехнических составов в которые более эффективен, чем при использовании традиционных схем снижения донного сопротивления, например вдуве инертных газов или реагирующих продуктов сгорания через отверстия в донном торце. Область I расположена вблизи донного среза, область 11 (фиг. 1) - вверх по потоку от области присоединения оторвавшегося пограничного слоя. Воздействие тепломассоподвода на эти области приблизительно одинаково и приводит к повышению донного давления до значения, близкого к статическому давлению в набегающем потоке. Результаты более ранних исследований по данной проблеме отражены в [6, 7], а также в работах обзорного характера [8,9].  [c.158]



Смотреть страницы где упоминается термин Присоединение сверхзвукового потока к поверхности тела : [c.87]    [c.89]    [c.91]    [c.93]    [c.95]    [c.97]    [c.99]    [c.101]    [c.103]    [c.105]    [c.73]    [c.547]    [c.256]    [c.57]    [c.124]    [c.254]   
Смотреть главы в:

Асимптотическая теория сверхзвуковых течений вязкого газа  -> Присоединение сверхзвукового потока к поверхности тела



ПОИСК



Л <иер сверхзвуковой

Поток сверхзвуковой

Тела Поверхность



© 2025 Mash-xxl.info Реклама на сайте