Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О соотношениях теории пластической анизотропии

А.Ю. Ишлинскому принадлежит теория трансляционного упрочнения пластического материала. На основе предложенной им механической модели, иллюстрирующей явление упрочнения за счет изменения внутренних напряжений, им даны общие соотношения упрочняющегося пластического материала, описывающие свойства приобретенной анизотропии, эффекта Баушингера и т. д.  [c.8]


Если путь нагружения в целом не очень искривлен, то упрочнение можно в первом приближении считать изотропным, пренебрегая деформационной анизотропией. В этом случае закон пластического деформирования (теория течения Сен-Венана — Леви— Мизеса) может быть построен путем обобщения соотношений (2.23)—(2.25). При этом вводится представление о длине криволинейного пути пластического деформирования  [c.53]

Как уже указывалось выше, основной областью применения деформационных уравнений повреждений является малоцикловая усталость [18, 39], причем расчет ширины петель пластического гистерезиса должен проводиться в этих условиях с учетом деформационной анизотропии. Кроме того, должна приниматься во внимание возможная циклическая нестабильность и ползучесть материала. Соответствующие расчеты не могут производиться на основе соотношения (3.31) теории течения, которая не учитывает  [c.91]

Наряду с интенсивным применением теории упругости для решения прикладных задач механики грунтов продолжались исследования по установлению пределов применимости и обоснованию этого подхода. В теоретическом плане эти исследования сводились к следующему. По решению задачи в рамках теории упругости и экспериментально установленному соотношению, связывающему компоненты тензора напряжений в предельном состоянии (в частности, по условию Кулона), определялись очертания и размеры областей, в которых нарушается условие применимости упругой модели. На этой основе формулировались ограничения на нагрузку, при выполнении которых применение теории упругости должно приводить к удовлетворительным результатам. Вывод сводится к тому, что размеры пластических областей не должны превышать 0,25 а, где а — размер фундамента сооружения. Кроме того, был сделан ряд схематизаций по учету влияния начального напряженного состояния грунтового основания, обусловленного его весомостью, а также неоднородности и анизотропии грунта на распределение напряжений и деформаций основания под сооружением, предназначенных для устранения наблюдающихся несоответствий (иногда значительных) между предсказаниями теории упругости и опытом. Эти схематизации сводились к тому, что вместо однородного упругого основания тем или иным способом в рассмотрение вводилось упругое основание конечной толщины, выбор которой позволял согласовать данные теории и опыта.  [c.206]


Линеаризованные физически нелинейные задачи для гладких и ребристых оболочек. Учет приобретенной анизотропии на примере линеарнзапни физически нелинейных задач теории малых упруго-пластических деформаций при использовании метода переменных параметров упругости рассмотрен в [П. 3]. В этом случае связь между компонентами усилий и деформаций для гладких и ребристых оболочек можно представить в форме (I 20) гл. 4 Д.ЧЯ неоднородных анизотропных оболочек. В этих уравнениях коэффициенты упругости являются функциями напряженно-деформированного состояния. Прн решении данной нелинейной задачи методом переменных параметров упругости физические соотношения на каждом шаге линеаризации сохраняют форму (1.20) с постоянными коэффициентами упругости. Часть коэффициентов в эти.х соотношениях обращается в нуль, а вид других зависит от интегральных физических характеристик сечения (например, [П. 6]). Уравнения равновесия и геометрические завнснмостн, естественно, остаются одинаковыми для теории малых упруго-пластических деформаций н линейной теории неоднородных анизотропных оболочек.  [c.219]

В 1951 г. Бернард Будянский, Норрис Ф. Доу, Роджер В. Петерс и Роланд П. Шепард (Budiansky, Dow, Peters and Shepard [1951, 1]) испытывали тонкостенные цилиндры из алюминиевого сплава 14 S-T 4, нагружая образцы при сжатии до деформаций порядка 0,005, после чего они вводили одновременно со сжатием кручение при заранее заданном соотношении нормальных и касательных напряжений. Их результаты, которые вызвали серьезную дискуссию по поводу того, могли или нет авторы принимать линейный характер функции отклика, оказались не соответствующими ни их версии деформационной теории, ни теории течения, ни предложенной ими теории скольжения при пластической деформации. Анизотропия в крупных цилиндрах, изготовленных при помощи штамповки, особенности изучавшихся сплавов и использование жестких испытательных машин, для которых деформации были предписаны, должны были быть факторами, влияющими на результаты опытов этих авторов,  [c.309]

Деформационная анизотропия. Развитие анизотропии упругих свойств при пластической деформации первоначально изотропного материала (деформационная анизотропия) является хорошо установленным экспериментальным фактом. Этот факт должен (в принципе) учитьюаться при определении пластической деформации и формулировке принципа гра-диентальности в теории течения. Соотношение типа (5) связано с появлением на рубеже 60-х гг. результатов, свидетельствующих о существенном (порядка 20% и выше) изменении средних на разгрузке модулей и о нелинейности разгрузки. Последующие исследования, вьшолненные на различных (в основном малоуглеродистых) сталях, меди, латуни, никеле, позволили сделать общие вьюоды в результате пластической деформации модули упругости Е, G убьюают (после предварительного растяжения Е изменяется значительнее, чем G после кручения — наоборот), причем наиболее быстро на начальном неупругом участке, и достигают минимума при  [c.51]

Как видно, угол а резко увеличивается в первой точке излома при переходе от сдвигого формоизменения к нормальному и достигает порядка 0.25 рад (14°), а затем уменьшается до значения 0.17 рад (9.8°) ко второй точке излома. После излома траектории нагружения во второй точке излома при переходе от нормального формоизменения к сдвиговому угол сближения интенсивно уменьшается и стремится к нулевому значению. Если учесть, что точность теории простых процессов по векторным свойствам для угла а составляет 7°, а точность процессов сложного нагружения в плоских задачах по углу деплана-ции не превышает 20-24° (Э2-эффект), то можно предположить, что процессы чистого формоизменения при сложном нагружении близки к квазипростому процессу [1]. Отклонения угла а от нулевого значения при переходе от сдвигового к нормальному формоизменению связаны с изменением структуры материала ио мере развития пластических деформаций и, как следствие, с возникающей деформационной анизотропией. При феноменологическом подходе к построению математической теории пластичности вполне естественным является гипотеза о том, что образ процесса нагружения при чистом формоизменении в условиях сложного нагружения описывается теорией пластичности квазииростых процессов [1]. Определяющие соотношения этой теории имеют вид  [c.147]



Смотреть страницы где упоминается термин О соотношениях теории пластической анизотропии : [c.183]    [c.185]    [c.187]    [c.144]    [c.167]    [c.170]    [c.23]    [c.59]    [c.22]   
Смотреть главы в:

Механика пластических сред Том1 Теория идеальной пластичности  -> О соотношениях теории пластической анизотропии



ПОИСК



Анизотропия



© 2025 Mash-xxl.info Реклама на сайте