Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ТУГОПЛАВКИЕ МЕТАЛЛЫ И ИХ СПЛАВЫ ТИТАН И СПЛАВЫ НА ЕГО ОСНОВЕ Титан

Весьма перспективными являются жаропрочные сплавы на ос-цове тугоплавких металлов, таких как молибден, хром, титан, ниобий, тантал и др., если устранить недостатки, которыми некоторые из них обладают. Так, основным недостатком сплавов на основе хрома является их хрупкость, а сплавов на основе молибдена, ниобия и тантала — их окисление. Разработка высокотемпературных защитных покрытий позволит шире использовать сплавы на основе молибдена, ниобия и тантала.  [c.186]


Внимание конструкторов я металлургов все больше привлекают так называемые редкие тугоплавкие металлы титан, цирконий, тантал, молибден, ниобий, а также сплавы на их основе. Эти металлы и сплавы обладают весьма ценными свойствами и в некоторых случаях значительно превосходят по кор розионной стойкости, жаропрочности, механическим и физическим свойствам сплавы на основе железа.  [c.8]

Жаропрочные сплавы на никелькобальтовой основе содержат жаропрочные и тугоплавкие металлы, а также агрессивные по отношению к кислороду элементы - титан, цирконий, ниобий. Сплавы содержат 10 - 12 полезных элементов, 4-8 нежелательных (кремний, марганец, железо, ванадий) и вредные (сера, фосфор, свинец, висмут и др.) элементы.  [c.267]

Число металлов и сплавов, используемых в сварных конструкциях, непрерывно возрастает, так как этого требует развитие науки и техники. Цветные металлы и сплавы находят широкое применение в авиастроении, ракетной и космической технике, энергетическом, атомном, химическом машиностроении, приборостроении и других отраслях. В качестве конструкционных материалов наиболее широко используются алюминий, магний, титан, медь, никель, молибден, ниобий, тантал, цирконий, гафний и сплавы на их основе. Цветные металлы и сплавы можно условно разделить на легкие (А1, Mg, Be), тяжелые (Си, Ni) и химически активные и тугоплавкие (Ti, Мо, Nb, Zr, Та).  [c.435]

Металлические композиционные материалы или композиционные материалы на основе металлов и сплавов. Чаще всего используются алюминий, магний, титан, медь и сплавы на их основе. Также делаются попытки использовать в качестве матрицы высокопрочные стали, тугоплавкие металлы и сплавы.  [c.186]

Все большее внимание конструкторов, металловедов и металлургов привлекают сплавы на основе редких, тугоплавких металлов. Среди них видное место принадлежит титану и его сплавам.  [c.133]

Разнообразные диффузионные покрытия, полученные на никелевых сплавах и на тугоплавких металлах, рассмотрены в книге (143], где подчеркнуто, что для высокотемпературной защиты сплавов на основе никеля по-прежнему наиболее перспективными и эффективными остаются алюминидные покрытия, которые целесообразно легировать бором, кремнием, хромом, титаном, танталом, ниобием, бериллием, магнием и другими элементами.  [c.270]

Введение серной кислоты и сульфата аммония приводит к сдвигу потенциала разряда металла в сторону положительных значений и повышению выхода его по току [86, с. 81]. Возможно, что анионы указанных компонентов электролита оказывают активирующее действие на поверхность катода. Из данных электролитов можно осаждать рений не только на сталь, медь и ее сплавы, но и на вольфрам, молибден, титан при соответствующей подготовке этих тугоплавких металлов. Толщина плотных, компактных покрытий не превышает нескольких микрометров. Для получения покрытий большей толщины предложено многослойное осаждение металла с термообработкой каждого слоя толщиною 1—2 мкм в среде водорода или инертного газа при 800—1000 °С в течение 30—60 мин, что приводит к образованию диффузионного сплава рения с металлом основы.  [c.165]


Кроме традиционного азотирования углеродистых, легированных сталей и чугунов все более широкое применение получает высокотемпературное азотирование тугоплавких металлов и сплавов на их основе (хром, молибден, вольфрам, ниобий, титан). При этом используется нагрев ТВЧ и азотирование в плазме тлеющего разряда, что в десятки раз сокращает продолжительность процесса.  [c.258]

К числу новых конструкционных металлов и сплавов, которые уже используются в настоящее время или могут найти в недалеком будущем широкое применение в качестве коррозионностойких материалов в химическом машиностроении, в ядерных установках, в производствах, связанных с высокотемпературной техникой, относятся титан, тантал, цирконий, молибден, ниобий и ряд карбидов, нитридов, силицидов тугоплавких металлов и др. Эти металлы и некоторые сплавы на их основе сочетают в себе весьма ценные физические и механические свойства и исключительную, для некоторых из них, коррозионную стойкость в наиболее сильно агрессивных средах, которая превосходит стойкость нержавеющих сталей, платины, золота, серебра и т. п. металлов.  [c.247]

Титан и его сплавы. Титан относится к группе тугоплавких металлов. Температура плавления титана 1665 qz 5° С, плотность 4,5 г/см . Предел прочности при растяукении чистого титана Ов = 250 МН/м , удлинение б = 70% технического титана, со-дер кащего примеси, Ов = 300 -i- 550 МН/м , б = 20 ч- 30%, т. е. чем больше примесей содержится в титане, тем выше его прочность и ниже пластичность. Однако отношение a ly (удельная прочность) титана значительно выше, чем у многих легированных конструкционных сталей. Вследствие этого при замене стали титановыми сплавами можно при равной прочности получить до 40% экономии по массе детали. Несмотря на высокую температуру плавления, титан имеет более низкую жаропрочность, чем сплавы на основе железа и никеля. Предельная температура использования титана и его сплавов не выше 550—600° С. При более высокой температуре титан и его сплавы легко окисляются и поглощают водород.  [c.24]

В карбонатных расплавах (в отсутствие примесей) деполяризатором таких металлов, как титан, железо и сплавов на их основе, является четырехвалеит-ный углерод карбонатных анионов. Окислителем никеля является растворенный в карбонатных расплавах кислород. Образующиеся при этом катионы металлов связываются в тугоплавкие оксидные соединения (низшие окислы, твердые растворы или химические соединения), которые закрывают поверхность металла. Если эти пленки плотно покрывают поверхность н плохо проводят ток, то металл пассивируется. Пассивация таких благородных металлов, как Pd, Pt, Lr, Au и сплав Au — Pd, обусловлена присутствием на их поверхности хемосорбнрованно-го кислорода.  [c.126]

Общие сведения. С развитием новых отраслей техники тугоплавкие металлы и их сплавы благодаря высоким жаропрочности, коррозионной стойкости в ряде агрессивных сред и другим свойствам находят все более широкое применение. К тугоплавким металлам, использующимся для изготовления сварных конструкций, относятся металлы IV, V и VI групп периодической системы Менделеева ниобий, тантал, цирконий, ванадий, титан, молибден, вольфрам и др. Эти металлы и сплавы на их основе обладают рядом общих физико-химических и технологических свойств, основными из которых являются высокие температура плавления, химическая активность в жидком и твердом состоянии при повышенных температурах поотношению к атмосферным газам, чувствительность к термическому воздействию, склонность к охрупчиванию, к интенсивному росту зерна при нагреве выше температуры рекристаллизации. Пластичность сварных соединений тугоплавких металлов, как и самих металлов, в большей мере зависит от содержания примесей внедрения. Растворимость азота, углерода и водорода в тугоплавких металлах показана на рис. 1. Содержание примесей внедрения влияет на технологические свойства тугоплавких металлов и особенно на их свариваемость. Взаимодействие тугоплавких металлов с газами и образование окислов, гидридов и нитридов вызывают резкое охрупчивание металла. Главной задачей металлургии сварки химически активных тугоплавких металлов является обеспечение совершенной защиты металла и минимального содержания в нем вредных примесей. Применение диффузионной сварки в вакууме для соединения тугоплавких металлов и их сплавов является весьма перспективным, так как позволяет использовать наиболее совершенную защиту металла от газов и регулировать термодеформационный цикл сварки в благоприятных для металла пределах.  [c.150]


В системах с ограниченной растворимостью образуются связи второго типа. Обратимся к композиту никель — вольфрам. Согласно Хансену и Андерко [14], никелевый сплав с 38% вольфрама находится в равновесии с твердым раствором на основе вольфрама, содержащим малые количества никеля (менее 0,3%). Такое равновесие предполагает равенство химических потенциалов. Этот принцип был использован Петрашеком и др. [33] при разработке сплава на Ni-основе для композита никелевый сплав — вольфрам. Вначале был использован сплав Ni-S0 r-25W. Затем в него были добавлены титан и алюминий. Во второй серии сплавов содержание вольфрама было понижено он был частично заменен другими тугоплавкими металлами ниобием, молибденом и танталом. Совместимость этих сплавов с вольфрамовой проволокой оказалась выше, чем у стандартных жаропрочных сплавов, но все же ниже, чем у сплавов, легированных только вольфрамом. Дальнейшее существенное улучшение, совместимости достигается добавками алюминия и титана, однако механизм влияния этих элементов на совместимость отличен от рассматриваемого здесь регулирования химических потенциалов. По заключению авторов, во избежание существенного уменьшения сечения вольфрамовой проволоки за счет диффузии следует использовать проволоку диаметром 0,38 мм. После выдержки при 1366 К в течение 50 ч глубина проникновения составляла 26 мкм, что соответствует коэффициенту диффузии (2-f-5) -10 ы / . Уменьшением сечения. волокна за счет диффузии можно объяснить более крутой наклон кривых длительной прочности в координатах Ларсена — Миллера для композита по сравнению с проволокой.  [c.132]

Металлические сплавы представляют собой двух- или многокомпо-нешные системы, обладающие стойкостью против общей коррозии или локальных видов коррозии, в том числе межкристаллитной, точечной, коррозионного растрескивания и др. (ГОСТ 9.908—85). Реже используют чистые металлы. Основой промышленных коррозионно-стойких сплавов являются железо (стали), титан, никель, медь, алюминий в отдельных случаях в качестве коррозионно-стойких применяются тугоплавкие и благородные металлы.  [c.379]

Никель образует твердые растворы со многими элементами, что обусловливает значительные возможности достижения высокой жаропрочности сплавов на его основе Температурная зависимость растворимости некоторых элементов приведена на рис 192 При 1000°С кобальт, железо, марганец и медь образуют неограниченные твердые растворы, а такие тугоплавкие металлы, как хром, вольфрам, молибден, тантал, ниобий, ванадий, — ограниченные твердые растворы с различными об ластями гомогенности Растворимость при 1000°С таких элемен тов, как титан и алюминий, со ставляет соответственно 10 и 7 %  [c.323]

Важность проблемы создания и применения Н0 вых химически стойких металлических материалов в различных отраслях. нашей промышленности, особенно в химическом машиностроении, подчеркнута в Программе КПСС. За последние два десятилетия в связи с интенсификацией и разработкой новых технологических процессов, протекающих в агрессивных средах при высоких температурах и давлениях, значительно возрос интерес к использованию новых конструкционных материалов на основе тугоплавких и редких металлов, таких как титан, ниобий, ванадий, молибден. Эти металлы и их сплавы обладают весьма ценными физико-химическими и механическими свойствами, а по коррозионной стойкости во многих случаях значительно превосходят сплавы на основе железа и цветных металлов, которые являются до настоящего времени основными конструкционными материалами в химическом аппарато-строении. По сырьевьгм ресурсам и возможностям металлургической иромышленности такие металлы, как титан и ниобий (а также и другие из числа тугоплавких), могли бы уже сейчас широко использоваться в химическом машиностроении. Однако их внедрение в эту отрасль промышленности идет сравнительно медленно. Одна из причин отставания — отсутствие необходимых сведений о свойствах этих металлов и их сплавов, в особенности об их химической стойкости и характере поведения в различных агрессивных средах.  [c.65]

До сих пор нет единого мнения о том, какие металлы считать тугоплавкими. Наиболее часто к тугоплавким условно относят металлы, которые плавятся при температурах выше точкп плавления железа (1536° С). Из всех тугоплавких металлов в чпстом виде п в виде основы сплавов массовое применение в технике нашли титан, цирконий, молибден, вольфрам и в значительно меньшей степени ниобий, тантал, ванадий.  [c.235]


Смотреть страницы где упоминается термин ТУГОПЛАВКИЕ МЕТАЛЛЫ И ИХ СПЛАВЫ ТИТАН И СПЛАВЫ НА ЕГО ОСНОВЕ Титан : [c.277]    [c.149]    [c.172]   
Смотреть главы в:

Металловедение и термическая обработка металлов  -> ТУГОПЛАВКИЕ МЕТАЛЛЫ И ИХ СПЛАВЫ ТИТАН И СПЛАВЫ НА ЕГО ОСНОВЕ Титан



ПОИСК



Металлы и сплавы Металлы

Металлы тугоплавкие

Сплавы металлов

Сплавы на основе

Титан

Титан и его сплавы

Титан и сплавы на его основе

Титан и сплавы титана

Титанит

Титания

Тугоплавкие металлы й сплавы

Тугоплавкие металлы сплавы на их основе

Тугоплавкие сплавы



© 2025 Mash-xxl.info Реклама на сайте