Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Управление объектами с большими изменениями параметров

УПРАВЛЕНИЕ ОБЪЕКТАМИ С БОЛЬШИМИ ИЗМЕНЕНИЯМИ ПАРАМЕТРОВ  [c.204]

Применение методов теории чувствительности требует, чтобы чувствительность в заданном интервале изменения параметров изменялась незначительно. Следовательно, в этом случае можно учесть только влияние относительно малых изменений параметров объекта. Часто возникает задача синтеза регуляторов с постоянными коэффициентами для объектов с большими изменениями параметров, и как показывает практика, это оказывается возможным. Задача управления с обратной связью объектами с большими, но  [c.204]


При малых вариациях параметров объекта синтез регуляторов можно проводить с использованием методов теории чувствительности ([10.1] — [10.7]). Если известна чувствительность системы по отношению к изменению параметров объекта, то при синтезе можно обеспечить требования хорошего качества процессов регулирования и малой чувствительности замкнутой системы к изменениям параметров объекта управления. Такой подход будет рассмотрен в разд. 10.1. Однако при больших изменениях параметров указанные методы теории чувствительности для синтеза непригодны. В этих случаях проектируют регуляторы с постоянными параметрами, оптимальные относительно усредненных моделей объектов с различными векторами параметров. Такой подход является более общим по сравнению с методами, основанными на оценке чувствительности. Б связи с тем что при этом подразумеваются большие изменения параметров, один и тот же регулятор рассчитывается для управления объектом в его двух или более рабочих точках, а не только для одной рабочей точки, как в случае синтеза с применением методов теории чувствительности, обеспечивающего малую чувствительность системы к (малым) изменениям параметров объекта. Однако этот вопрос будет рассмотрен в разд. 10.2 очень кратко. Такая задача была впервые поставлена в работе [8.8] для непрерывных регуляторов.  [c.198]

Из рис. 11.4.2 и табл. 11.4.2 следует, что в системах управления с обратной связью, нечувствительных к низкочастотным возмущениям, весовой коэффициент г при управляющей переменной должен быть большим, т. е. реализуется жесткое управление. Однако, если компоненты сигнала возмущения п(к) близки к резонансной частоте, необходимо уменьшать резонансный пик и поэтому уменьшать г, т. е. реализовать более мягкое управление. Из сказанного следует, что при синтезе нечувствительных систем управления необходимо учитывать спектр сигнала возмущения. Если рассматривать величину R(z)p, то из рис. 11.4.2 и рис. 11.4.3 видно, что высокой чувствительностью к изменениям параметров объекта обладают следующие регуляторы в диапазоне I — 2ПР-2 в диапазоне II — 2ПР-2, AP(v)n P . Малой чувствительностью в диапазоне I обладает регулятор РС, а в диапазоне II — АР (v + 1). Заметим, однако, что параметрически оптимизируемые и апериодические регуляторы были синтезированы для ступенчатого изменения установившегося состояния, т. е. для малых возбуждающих воздействий в диапазонах II и III. Для ступенчатого изменения задающего сигнала w(k) эти результаты в основном согласуются с результатами исследования чувствительности в разд. 11.3,6.  [c.202]


На основе изучения производственного оборудования выявляются возможности по его модернизации и совершенствованию, устанавливаются способы воздействия на органы управления с целью обеспечения требуемой стабильности или изменения технологических режимов его работы по заданной условиями работы программе. Для большей наглядности автоматизируемый процесс и используемое в нем оборудование целесообразно изобразить в виде скелетной схемы с входящими и выходящими параметрами. Последовательность изображения объектов автоматизации в схеме должна соответствовать очередности выполняемых при обработке изделия операций. Такие схемы позволяют наглядно представить места ввода и вывода возмущающих параметров, установить местоположение датчиков отбора импульсов для воздействия на систему регулирования, назначить места установки исполнительных механизмов.  [c.285]

Второй раздел посвящен синтезу цифровых систем управления при детерминированных воздействиях. Описываются основные типы непрерывных регуляторов и способы их реализации на управляющих ЭВМ с помощью схем непосредственного, последовательного и параллельного программирования. При этом осуществляется оптимизация параметров полученных цифровых регуляторов. Особый интерес для проектировщиков представляет методика построения цифровых регуляторов, обеспечивающих сокращение нулей и полюсов в неизменяемой части системы. Это упрощает процесс проектирования систем высоких порядков, описываемых сложными передаточными функциями. Определенный интерес также представляют методы расчета регуляторов, в которых для получения заданных показателей качества используется информация по всем переменным состояния или лишь по части состояний, когда остальные воспроизводятся с помощью наблюдателей различных типов. Достаточно подробно в разделе освещены вопросы синтеза регуляторов, обеспечивающих конечное время установления переходных процессов в системе управления. Большое значение имеют описываемые автором способы оценки чувствительности системы к изменению собственных параметров объекта управления, которые необходимы при выборе рабочих алгоритмов управляющей ЭВМ.  [c.5]

Существует немало доводов в пользу того, что математическое моделирование на ЭВМ должно развиваться наряду с физическим моделированием как в инженерных исследованиях и разработках, так и в учебном процессе. Один из аргументов (возможно, важнейщий) состоит в том, что задачей моделирования становится не просто изучение явления или создание некоторого работоспособного устройства, а управление процессами и целенаправленный поиск оптимального проектного решения. Для сложных современных объектов такой поиск предполагает необходимость рассмотрения большого числа вариантов. Это становится возможным лишь при использовании математической модели объекта, реализованной на ЭВМ. Широта диапазона изменения параметров, возможность выявления значащих и незначащих факторов путем включения или исключения их из модели (программы), простота моделирования экстремальных и аварийных ситуаций — вот перечень преимуществ численного эксперимента на ЭВМ. Эти преимущества могут быть реализованы и в простых учебных программах при условии соответствующей методической проработки, включая организацию диа-  [c.201]

Наиболее простой вид активного управления сваркой состоит в первоначальном подборе законов изменения ТУ (т) и ( ) или ( ) в процессе данной сварки. Такой подбор позволяет получить оптимальные зависимости N ) (см., например, [40]) и о ( )> которые выдерживаются затем автоматически. Такой вид активного управления был порожден необходимостью сваривать трудносвариваемые металлы. Например, чтобы реализовать в начале сварки жаропрочных металлов [34] хороший механический контакт наконечника с деталью, процесс ведут при малой мощности Рзл и большом значении N, а затем, чтобы получить сварку, увеличивают Рэд и уменьшают N. Если материалы свариваются хорошо, то активное управление процессом сварки позволяет улучшить качество соединений. Простейший случай такого управления, однако, более сложен [57], чем автоматическая работа по выбранным зависимостям N ), (х). Согласно работе [57], управление процессом сварки (управление величиной т) происходит во время каждого сварочного цикла, в соответствии с регистрируемой во время цикла изменяющейся величиной з, т. е. амплитудой колебаний опоры Когда достигает величины, установленной заранее для данного объекта сварки, процесс сварки прекращается. Полагают, что изменения ёз (х) отражают кинетику образования сварного соединения [57]. Управление осуществляют с помощью простого устройства электродинамический датчик колебаний опоры соединен с устройством, выключающим электрический генератор при заранее найденной величине сигнала датчика. При таком методе управления процессом колебания прочности соединений составляют всего +5%. Управление процессом в зависимости от изменения некоторого выбранного параметра в течение каждого сварочного цикла наиболее перспективно именно при ультразвуковой сварке металлов, так как в этом способе сварки есть много параметров, пригодных для такого вида управления. Например, можно одновременно управлять величиной N, настраивая систему на максимальную величину (см. 5 гл. 1), и мощностью Р. для сохранения выбранной величины Очевидно, что все такие системы управления должны строиться с учетом физики процесса сварки для получения максимальной прочности соединений и минимального разброса прочности и времени сварки (повышение производительности). Системы с автоматизированным поиском оптимальных условий могут дополняться системами, обладающими широкими возможностями экспериментального подбора зависимостей ТУ (т) и ( )- Одна из таких систем основана на управлении величиной в течение сварочного цикла, в соответствии с требованием обеспечить большое время нарастания до установившейся величины (см. гл. 1 и 2) и с возможностью увеличивать или в конце свароч-  [c.144]


С помощью этой теории могут быть синтезированы сущест веино нелинейные законы на основе адекватных по сложности моделей движения, гарантирующие достижение приемлемого качества управления в широком диапазоне варьирования параметров объекта и возмущающих воздействий, диапазон изменений которых задается так называемыми нечеткими множества мн . Предметом теории нечеткого управления является изучение методов синтеза стратегий (законов) управления на основе нечетких правил управления, выраженных в словесном виде если некоторое отклонение А велико, то управление U должно быть большой отрицательной величиной н т. п, Этн правила управления (лингвистические высказывания по управлению) формулируют обычно на основе накопленного опыта оператора ручного управления. Для лучшего понимания сути теории нечеткого управления рассмотрим элементарный гипотетический пример ручной стыковки КА, по содержанию близкий обсуждаемому случаю.  [c.355]

Работа автоматики регул1ирова-ния процесса горения сводится к поддержанию требуемого давления пара в котле, что осуществляется изменением расхода. газа, поступающего в горелки. Паропроиз-водительность котла и давление пара связаны между собой однозначно, вследствие чего управление подачей топлива возлагается на регулятор давления пара. Поскольку объект регулирования обладает большой Инери)ионностью, данный регулятор необходимо снабдить упругой обратной связью, чтобы регулирующий орган перемещался с такой скоростью и принимал такие положения, которые требуются для быстрого затухания колебаний регулируемого параметра (в данном случае расхода газа).  [c.240]


Смотреть страницы где упоминается термин Управление объектами с большими изменениями параметров : [c.34]    [c.296]    [c.16]    [c.50]    [c.465]   
Смотреть главы в:

Цифровые системы управления  -> Управление объектами с большими изменениями параметров



ПОИСК



Объект управления

Параметр большой

Параметр управления

Параметры объектов



© 2025 Mash-xxl.info Реклама на сайте