Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Углеродистая Стойкость релаксационная

Углеродистые стали обладают невысокой релаксационной стойкостью, низкой прокаливаемостью, непригодны для работы при повышенных температурах.  [c.17]

Легированные пружинные стали — отличаются более высокой релаксационной стойкостью, чем углеродистые, и, кроме того, позволяют получить высокие прочностные свойства (в том числе и предел упругости) в сочетании с повышенной вязкостью и сопротивлением хрупкому разрушению в упругих элементах повышенного сечения. Возможность закалки пружин и других упругих элементов из некоторых более высоколегированных пружинных сталей на воздухе также позволяет сильно уменьшить зональные остаточные напряжения, что повышает стабильность характеристик изделий во времени.  [c.347]


Углеродистая сталь отличается низкой коррозионной стойкостью, сравнительно высоким температурным коэффициентом модуля упругости, и из-за сниженной релаксационной стойкости при небольшом нагреве. Поэтому она непригодна для работы при температурах выше 100° С. Кроме того, углеродистая сталь имеет малую прокаливаемость, и поэтому ее можно применять лишь для изготовления пружин малого сечения. При закалке, когда необходимо охлаждение пружин в воде, неизбежно наблюдается значительная их деформация, а при очень сложных конфигурациях могут возникать Трещины.  [c.195]

Л е тированные пружинные стали отличаются более высокой релаксационной стойкостью, чем углеродистые, и, кроме того, позволяют получить высокие прочностные свойства (в том числе и предел упругости) в сочетании с повышенной вязкостью и сопротивлением хрупкому разрушению в упругих элементах повышенного сечения. Возможность закалки пружин и других упругих элементов из некоторых более высоколегированных пружинных сталей на воздухе  [c.195]

Эти стали и сплавы используют при различных напряжениях, температурах и в разных средах (на воздухе и в коррозионноактивных). Разнообразные по составу и свойствам пружинные стали целесообразно распределить на стали и сплавы 1) с высокими механическими свойствами — это углеродистые и легированные стали, которые должны в первую очередь иметь высокое сопротивление малым пластическим деформациям (предел упругости или предел пропорциональности), высокий предел выносливости и повышенную релаксационную стойкость при достаточной вязкости и пластичности (табл. 28) 2) с дополнительными химическими и физическими свойствами немагнитные, коррозионно-стойкие, с низким и постоянным температурным коэффициентом модуля упругости, с высокой электропроводностью и др.  [c.407]

Изучалась также температурная зависимость релаксационной стойкости. Для углеродистой стали выявлен прямолинейный характер изменения величины I 1п от температуры (рис. 2).  [c.44]

При сравнительно невысоких температурах эксплуатации (для углеродистых сталей это 200-400 С), когда ползучесть еще выражена слабо, свойства металлов и сварных соединений характеризуют пределом текучести и временным сопротивлением и по ним назначают допускаемые напряжения. Все же следует отметить, что уже при температурах выше 150-200 °С появляются признаки поведения сталей, которых нет при комнатных температурах. Это деформационное старение и пониженная релаксационная стойкость, которые в некоторых случаях следует иметь в виду при оценке работоспособности конструкций.  [c.433]


Напряжения ах в болтах рекомендуется с целью повьппения релаксационной стойкости принимать небольшими, учитывая, однако, сопутствующее снижению ах увеличение габаритов и массы соединения. Нижним пределом можно считать Ох = 10 кгс/мм , меньше которой площадь Кх резко возрастает. Для конструкций общего машиностроения, а также для корпусов из легких сплавов, стягиваемых стальными болтами, можно принимать стх = 12 ч-15 кгс/мм , т. е. изготовлять болты из углеродистых сталей. Для конструкций малой массы и габаритов, а также при чугунных и стальных корпусах целесообразно принимать ох = 20 -т-4- 30 кгс/мм (легированные стали). Увеличение стх свьппе 40 кгс/мм существенного вьшгрьшха в габарите и массе не дает.  [c.433]

Один из недостатков упрочнейия методом патентирования и холодной деформации— это возможность его применения преимущественно для углеродистой стали, что, естественно, не позволяет обеспечить повышенную релаксационную стойкость пружин из этой стали при нагреве. Применение патентирования для легированных сталей, которые должны обладать большей теплостойкостью, технологически мало эффективно M-sa высокой устойчивости переохлажденного аустенита и поэтому большой длительности перлитного превращения, что требует полной перестройки патентированных агрегатов. Весьма перспективным в этом отношении является закалка (лучше ступенчатая) с последующим скоростным электроотпуском или — что техноло-  [c.40]

В итоге применения подобной термической обработки холодного волочения пружинная проволока из сталей 70С2Х, 70ХГФА и 50ХФА соответствует по прочности углеродистой стали I и II класса по ГОСТ 9389—60, при более высокой релаксационной стойкости. Однако применение описанного нрвого процесса возможно лишь для сталей перлитного класса и поэтому на них нельзя получить высокой теплостойкости (жаропрочности), коррозионной стойкости, особенно в сочетании с немагнитностью.  [c.41]

Самыми напряженными элементами корпусов ЦВД и ЦСД являются скрепляющие фланцы шпильки или болты. Материал этих деталей должен обладать высоким пределом текучести, обеспечивающим упругое растяжение при затяжке, высокой релаксационной стойкостью, обеспечивающей плотность разъема в период между капитальными ремонтами, малой склонностью к появлению трещин в резьбе. Для крепежа, работающего при 520— 535 и 500—510 °С, наиболее употребительными являются стали соответственно 25Х2МФ (ЭИ-723) и 25X1МФ (ЭИ-10). Для зон с температурой менее 400 °С используется хромомолибденовая сталь 35ХМ, а менее 300 °С — углеродистая сталь 35.  [c.99]

Повреждением на котлах было охвачено от 60. .. 70 до 100 % штуцерных сварных соединений. Причина повреждений заключается в том, что часть сечения швов со стороны корневой части выполнена углеродистыми электродами Э50А, а остальное сечение швов - электродами Э-09Х1МФ. В процессе эксплуатации в условиях ползучести напряжения релаксировались в углеродистом участке шва, что неизбежно создавало более напряженное состояние в легированном участке (примерно в 2 раза), поскольку участок металла 09Х1МФ характеризуется более высокой релаксационной стойкостью.  [c.106]

Обычно патентированную проволоку и ленту изготовляют из углеродистых или низколегированных сталей (60С2, 65Г, 70С2ХА) Легирование патентированной стали ограничено, так как большинство легирующих элементов повышают устойчивость аустенита в перлитной области, что нежелательно для операции патентирования Кремний повышает предел упругости патентированной холоднодеформирован ной проволоки и ленты, повышает ее теплостойкость и релаксационную стойкость  [c.207]

Легирование повышает прочность и релаксационную стойкость стали. Марганцовые стали склонны к хрупкости при перегревах во время закалки кремнистые стали, как и углеродистые, обладают небольшой прокаливаемостью, и поэтому из них изготовляют пружины малого сечения. Высокими механическими свойствами, особенно в отношении усталостной прочности, обладают хромомарганцовые, хромованадиевые и хромокремне-марганцовые стали их применяют для пружин ответственного назначения, работающ,их в условиях переменных напряжений.  [c.17]

Принципы оптимизации параметров релаксационной обработки для различных сталей и сплавов в основном совпадают, однако выбор величины действующего напряжения, температуры нагрева, длительности процесса, предварительной термической обработки, условий нагружения во многом зависит от индивидуальных особенностей материала и от характера реализуемого в нем механизма упрочнения. Установлено, что релаксационная обработка является перспективным способом повышения структурной стабильности углеродистой стали [5], а также ряда дисперсионно-твердеющих сплавов [10]. Например, проведение релаксационной обработки на стали 50ХФА после стандартной закалки и отпуска при 200° С — нагружение при 250—300° С до напряжения, равного Оо,оо5> — позволило повысить предел упругости на 20—30% (по данным Г. А, Мелковой). Применение программного нагружения при 150—250° С способствовало повышению предела упругости бериллиевой бронзы почти на 50% и увеличению релаксационной стойкости при статическом нагружении в 4 раза (по данным Ю. А. Каплуна).  [c.688]


Пружины из углеродистых и легированных сталей даже для их службы в обычной воздушной атмосфере требуют защиты от коррозии с помощью гальванических покрытий — цинкования и кадмирования. Однако применение покрытий для пружин после значительного их упрочнения опасно из-за иаводороживаиия, а также ухудшения их свойств, особенно в малых сечениях. При этом снижается жесткость пружин из-за умепьщеиня модуля упругости и релаксационная стойкость, поскольку слой покрытия обладает низким сопротивлением малым пластическим деформациям. Поэтому во многих случаях, особенно когда пружины приборов и регулирующих устройств работают в коррозионио-активных средах, необходимо применять коррозионно-стойкие стали (ГОСТ 5632—72), упрочняемые в результате закалки и отпуска (старения). Хотя эти стали по своему составу существенно отличаются от углеродистых и легированных, для них справедливы те же условия проведения закалки, а именно — нагрев в защитной атмосфере, фиксирование мелкого зерна и получение минимального количества остаточного аустенита.  [c.699]

Средний огпуск (350—400° С) средне- и высокоуглеродистых сталей (0,5—1,0%) обеспечивает высокие предел упругости, предел выносливости и большую релаксационную стойкость. Поэтому этот вид отпуска используют после закалки пружин. Температуру отпуска пружин из углеродистой ста(ли в зависимости от требуемого предела прочности, предела упругости и вязкости обычно принимают равной 350—400° С.  [c.321]

Упрочнение холодной пластической деформацией. Для изготовления средних и мелких витых пружин широко применяют патентированную проволоку (диаметром до 8 мм), изготовляемую из среднеуглеродистых сталей с содержанием марганца 0,3—0,6% и сталей 65Г и 70Г с содержанием марганца 0,7—1,0%, а также из углеродистых инструментальных сталей. После навивки в холодном состоянии пружины подвергают низкому отпуску (175— 250° С, выдержка 15—20 мин в зависимости от диаметра проволоки) для снятия напряжений, повышения пределов упругости и выносливости, релаксационной стойкости и обеспечения стабильности размеров пружины.  [c.234]

Заметное влияние на сопротивление релаксации оказывает размер зерна углеродистой и малолегированной стали. Релаксационная стойкость ее повьинается с увеличением размера зерна, т. е. с уменьшением общей протяженности границ зерен. С ростом температуры это влияние размера зерна на релаксационную стойкость увеличивается. Особенно сильно с размером зерна связано сопротивление релаксации в первый период релаксационных испытаний. Это подтверждает предположение И. А. Одинга о роли границ и пограничных процессов в начальный период процесса релаксации.  [c.48]


Смотреть страницы где упоминается термин Углеродистая Стойкость релаксационная : [c.92]    [c.347]    [c.371]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.290 ]



ПОИСК



Р углеродистое

С релаксационная

см Стойкость релаксационная



© 2025 Mash-xxl.info Реклама на сайте