Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод Стокса решение для функции тока

Метод Стокса решение для функции тока  [c.754]

Строгое аналитическое решение задачи о движении сферы в реальной (вязкой) жидкости было получено лишь применительно к условию Re 1, т.е. для весьма медленного обтекания жидкостью сферы малых размеров. Впервые эта задача была решена еще в 1851 г Стоксом, который ввел для анализа специальную функцию тока. Здесь будет представлен другой метод решения [26].  [c.191]


При расчете вихревых течений используются различные методы. В последние годы все шире развиваются подходы, основанные на прямом численном решении уравнений Навье - Стокса. Как вариант таких подходов можно рассматривать и метод решения двумерных задач в переменных функция тока - завихренность . В случаях локализованной завихренности, особенно при больших числах Рейнольдса, когда влияние вязкости на динамику завихренности мало, с успехом используются вихревые методы, основанные на лагранжевом подходе к описанию движения жидкости.  [c.320]

Малые числа Рейнольдса. В [247, 282] методом сращиваемых асимптотических разложений получено решение задачи об обтекании кругового цилиндра радиуса а поступательным потоком вязкой несжимаемой жидкости со скоростью Ц при малых числах Рейнольдса. Исследование проводилось в полярной системе координат в на основе полных уравнений Навье — Стокса (1.1.4), что позволило получить следующее выражение для функции тока при Т1/а 1  [c.76]

Для решения поставленной задачи будем использовать метод последовательных итераций [22]. Он заключается в следующем. В качестве начального приближения для ф и используем функции тока, являющиеся решением задачи об обтекании пузырька потоком жидкости при учете инерционных эффектов (см. разд. 2.3). С помощью этих выражений для функций тока можно определить нормальные компоненты тензора напряжений в обеих фа.чах. Тогда можно решить уравнение (2. 7. 9) и тем самым определить начальное значение функции С (т]). Далее для найденной формы пузырька нужно повторить решение уравнения Навье—Стокса при помощи метода сращиваемых асимптотических разложений (см. разд. 2.3) и т. д. Рассмотрим решение уравнения (2. 7. 9) в соответствии с [22], считая, что неоднородная его часть явля-  [c.66]

Ламинарное круговое движение жидкости, заключенной между вращающимися круговыми цилиндрами, уже давно привлекает внимание исследователей. Течение несжимаемой жидкости, возникающее при относительном вращении двух цилиндров, известно как течение Куэтта. Так как линии тока располагаются по концентрическим окружностям и, следовательно, частицы жидкости ускоряются, инерционные члены в уравнениях Навье — Стокса не должны быть равны нулю. Эти нелинейные члены, однако, полностью компенсируются радиальным градиентом давления, и поэтому метод решения результирующих уравнений достаточно прост. В частности, если ввести цилиндрические координаты (г, ф, х), то не равной нулю компонентой скорости будет лишь тангенциальная составляющая которая будет являться функцией только радиального расстояния г. Таким образом, уравнение неразрывности удовлетворяется автоматически, а уравнения Навье — Стокса сводятся к двум oбыкнoвeI ным дифференциальным уравнениям  [c.48]



Смотреть страницы где упоминается термин Метод Стокса решение для функции тока : [c.11]    [c.65]   
Смотреть главы в:

Гидродинамика  -> Метод Стокса решение для функции тока



ПОИСК



Метод функции тока

Методы функций

Решения метод

Стокс

Стокса метод

Стокса функция тока

Функция тока



© 2025 Mash-xxl.info Реклама на сайте