Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Типы задач на расчет каналов

Типы задач на расчет каналов  [c.149]

ТИПЫ ЗАДАЧ НА РАСЧЕТ КАНАЛОВ  [c.149]

Трапецеидальные каналы гидравлически наивыгоднейшего профиля относительно узкие (см. табл. 16.2), что осложняет их строительство. В связи с этим представляет большой интерес рассмотрение возможности создания трапецеидальных каналов, в которых отношение v/vг. н было бы незначительно (например, не более чем на 5 %) меньше единицы (см. табл. П.16.7). Следовательно, в таких каналах со/сор незначительно (также не более чем на 5 %) превышает единицу. При столь малых отклонениях от сор. н (напомним, что она минимальная при данном расходе) отношения ЫН при удалении от гидравлически наивыгоднейшего профиля резко растут, а это и необходимо. Поэтому если нельзя запроектировать канал гидравлически наивыгоднейшего профиля, рекомендуется запроектировать канал, назначая требуемое отношение v/vr. н (тем самым и со/сор. н)> и расчет ведется как для задачи четвертого типа.  [c.48]


Определение пространственных гидродинамических параметров потока (поля скоростей, давления, плотности), как правило, позволяет вскрыть физическую картину рассматриваемой конкретной задачи. Для практических гидродинамических расчетов конкретных типов аппаратов и их оптимизации необходимо знать силу трения на поверхности, обтекаемой потоком жидкости или газа, что позволяет определить потери давления (при течении жидкости в канале) или потери кинетической энергии потока (при внешнем обтекании тел) с позиций одномерной модели течения.  [c.17]

Динамические свойства струйных элементов, работающих с отрывом потока от стенки. Переходные процессы в элементах, работающих с отрывом потока от стенки, очень сложны. Это показали уже первые опыты, проведенные с элементами данного типа при разработке их моделей, описанных в 14. Было выяснено, что процесс отрыва потока от стенки протекает различно в зависимости от того, насколько резко и в каких пределах меняется давление на входе в канал управления. В некоторых случаях, что зависит от объема и формы каналов и камер, включаемых на линии управления и в выходной магистрали элемента, наблюдаются высокочастотные колебания в потоке переход с одного режима работы на другой сопровождается характерным изменением звука, слышимого при работе элемента, что указывает на связь между аэродинамическими и акустическими эффектами и т. д. Эти наблюдения были сделаны и другими исследователями при изучении плоских струйных элементов ([59, 67] и др.). Аналитическое исследование переходных процессов в струйных элементах является одной из наиболее важных задач теории элементов пневмоники. Однако сейчас еще не имеется достаточных данных для расчета этих процессов. Поэтому ограничимся качественной их оценкой.  [c.193]

Теоретический анализ МГД течений в 1950-б0-е гг. наталкивался на значительные трудности, и поэтому вначале исследование течений проводилось в одномерном приближении. Но такой подход оказался некорректным из-за наличия специфических пространственных МГД эффектов, связанных с неоднородностью магнитного поля, электрофизических свойств стенок канала и т.д. Поэтому столь значительный резонанс получила работа А.Б. Ватажина и С. А. Регирера ([13] и Глава 12.1), в которой впервые были развиты приближенные методы расчета пространственных МГД эффектов в каналах, основанные на задании гидродинамических полей и переходе к уравнениям эллиптического типа для расчета электрических полей. Развита процедура осреднения, позволяющая получать двумерные формулировки задач. В дальнейшем предложенный метод широко использовался во многих исследовательских организациях при проектировании и анализе работы энергетических МГД устройств.  [c.517]


Для вязких течений через каналы и сопла с искривленными стенками, локальные радиусы продольной кривизны которых сравнимы с локальными поперечными размерами канала, получены упрощенные уравнения Навье - Стокса, которые имеют эллиптический тип в дозвуковых областях течения и гиперболический тип - в сверхзвуковых. Для полученной системы уравнений разработан новый численный метод эволюционного типа по продольной координате с глобальными итерациями поля направлений линий тока и поля продольного градиента давления. Эффективность метода иллюстрируется на примере решения прямой задачи сопла Лаваля для течения воздуха при числах Рейнольдса Ке и 10 в конических соплах с кривизной горла = 1,0 и 1,6 - кривизна, отнесенная к обратной величине радиуса критического сечения сопла). Для расчета расхода и тяги сопла с точностью 0,01% достаточно двух итераций.  [c.61]

С помощью указанных представлений методы расчета плоского потока (соответствующие с = 0) обобщаются на случай течения в слое переменной толщины несжимаемой жидкости, а также и газа (при дозвуковых скоростях), если использовать метод последовательных приближений типа Рейли — Янцена. Расчеты существенно усложняются из-за более сложного вида основных элементарных течений и необходимости вычислять интегралы по площади, поэтому известные работы ограничены общими обсуждениями применения метода особенностей в потоке несжимаемой жидкости (С. В. Валландер, 1958 А. М. Гохман и Е. В. Н. Pao, 1965) и решениями (вихревым методом) прямой и обратной задач в простейших случаях h X (Л. А. Симонов, 1950, 1957) ж h = х (Н. Г. Белехова, 1958 К. А. Киселев, 1958 Б. С. Раухман, 1965), а также построением элементарных течений от решетки источников в слое h = х " (Ю. А. Гладышев, 1964) и решетки диполей в слое h ехр ix (В. А. Юрисов, 1964). Для расчета течений газа в пределах межлопаточных каналов развиты и практически применяются более простые численные и приближенные методы из них самый простой основан на осреднении потока поперек канала (по у) и сведении задачи к одномерной (Г. Ю. Степанов, 1962  [c.150]

На практике приходится решать смешанные стационарные задачи, когда в поле течения имеются области как дозвукового, так и сверхзвукового потока. Такого рода задачи возникают при внешнем сверхзвуковом обтекании затупленных тел с отошедшей ударной волной, во внутреннем течении в сопле Лаваля и в других каналах. В этом случае математическая модель имеет наиболее сложный вид — течение газа описывается системой квазилинейных уравнений в частных производных, имеющей смешанный эллиптико-гиперболический тип. При этом положение поверхности перехода от дозвукового течения к сверхзвуковому заранее неизвестно. Расчет таких течений является затрудни-  [c.267]

Задача 6-15. Трапецеидальный канал с 6 = 10 ж /п=1,25 я = 0,020 /=0,001 пропускает расход ( .= 22 м [сек. На канале поставлен щит вызвавший подъем горизонта воды на 0,53 м по сравнению с нормальным его положением. Определить тип кривой свободной поверхности и рассчитать эту криву)о. Расчет выполнить по способам Б. А. Бахметева, Н. И. Павловского, И. И. Агроскина и по способу суммирования.  [c.247]

Практический интерес представляют исследование характеристик течения и изучение влияния на их протекание расположения концевых точек наружных стенок подводящих каналов не только для струйных элементов, у которых оси каналов образуют прямой угол, но также и для элементов, у которых они пересекаются иод другими углами. Этим вопросам посвящена работа Р. Т. Кронина [62]. В отличие от исследований, проведенных Н. Н. Ивановым, в последней работе решение рассматриваемой задачи не доведено до получения формул типа (12.3) и (12.4), которые могут непосредственно использоваться при инженерных расчетах.  [c.130]

Вообще говоря, эти колебания могут быть описаны уравнениями гидравлического удара и исследованы вместе с ним как единая общая задача о неустановившемся режиме гидравлической системы. Анализируя влияние на колебания в уравнительных резервуарах и напорных деривационных туннелях упругости воды и стенок сооружений, инерции жидкой массы, заключенной в резервуаре, и конечного времени регулирования гидроагрегата, Н. А. Картвелишвили (1952) пришел к выводу, что учет этих факторов уточняет расчет уравнительных резервуаров не более чем на 1%. Поэтому при рассмотрении медленных колебаний жидких масс в уравнительном резервуаре удобно считать, что регулирующие органы турбины закрываются или открываются мгновенно, упругостью же воды и стенок сооружений можно пренебречь, В этом случае уравнения колебаний жидкости представляют собой уравнения одномерного неустановившегося движения несжимаемой жидкости в напорных каналах с абсолютно недеформируемыми стенками. Такие уравнения, в общем случае неразрешимые в квадратурах, могут быть проинтегрированы численно (или графически) для любых типов и систем резервуаров. Существенную роль в этих процессах играют гидравлические сопротивления, проявляющиеся нелинейным образом. Подробнее некоторые детали расчета были рассмотрены Н. А, Картвелишвили (1959, 1967).  [c.723]



Смотреть страницы где упоминается термин Типы задач на расчет каналов : [c.186]    [c.141]   
Смотреть главы в:

Справочное пособие по гидравлике гидромашинам и гидроприводам  -> Типы задач на расчет каналов



ПОИСК



Задачи на расчет каналов

Задачи расчета

Задачи типа

Основные типы задач при гидравлическом расчете каналов

Основные типы задач при расчете каналов

Расчет каналов

Типы задач при расчете каналов. Основы расчета



© 2025 Mash-xxl.info Реклама на сайте