Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

НЕЛИНЕЙНАЯ ТЕОРИЯ УПРУГОСТИ Основные понятия

Поэтому в данной главе в начале приведены в справочном варианте основные понятия и соотношения нелинейной теории упругости и элементы нелинейной теории вязкоупругости (причем читатель, знакомый с книгами Л.И. Седова [228] и А.И. Лурье [131], естественно, может пропустить этот раздел). А затем изложены основные соотношения теории многократного наложения больших деформаций [120], причем для удобства чтения в более расширенном, чем справочный формат, изложении.  [c.256]


J .S. Основные понятия и определения нелинейной теории упругости 277  [c.277]

Основные понятия. Если не связывать метод конвективных координат с методом, который обсуждался в предыдущих пунктах, то сам вывод уравнений нелинейной теории упругости очень прост. Благодаря этому настоящий метод распространен относительно широко. Второй причиной распространенности метода является проведение вычислений в несколько этапов, что упрощает определение правильности рассуждений.  [c.45]

Основные понятия нелинейной теории упругости 11  [c.11]

В настоящей главе даются лишь начальные представления об условиях распространения трещин, основанные на решениях теории упругости и составляющие так называемую линейную механику разрушения. В основном они справедливы лишь тогда, когда зона нелинейных упругопластических деформаций у острия трещины невелика по сравнению с ее длиной. В данной главе можно познакомиться с явлением роста трещины и с рядом характеризующих его понятий. Это позволит в случае необходимости самостоятельно воспользоваться обширной литературой, существующей по механике разрушения, как линейной, так и нелинейной [см. 4, И, 24, 38 и др.].  [c.370]

Многие вопросы из той обширной области, которую представляет собой физическая акустика, мы не могли включить в эту книгу. Так, опущены разделы по квантовым явлениям и по взаимодействию звука с электронами в металлах, не рассмотрены процессы аэродинамической генерации звука, очень кратко освещены вопросы возбуждения и рассеяния звука. С другой стороны, некоторые разделы изложены более подробно, чем, казалось, следовало бы. Так, основным понятиям гидродинамики посвящена отдельная глава, в то время как аналогичные сведения из теории упругости излагаются весьма конспективно. Это связано с тем, что, как показал наш опыт, студенты обычно лучше знакомы с теорией упругости, чем с гидродинамикой. В книге мы намеренно уделили большое внимание нелинейным задачам наше твердое убеждение состоит в том, что развитие физической акустики идет и в ближайшее время пойдет еще более быстрыми темпами именно в этом направлении. Будут развиваться (как в теоретическом, так и в особенности в экспериментальном плане) те области физической акустики, где волны конечной амплитуды играют заметную роль.  [c.7]

Замечания. О только что полученных уравнениях нужно сделать несколько замечаний. Сначала следует отметить, что для введения понятия тензора напряжений не привлекались соображения, связанные с рассмотрением тетраэдра. Далее, в рамках данной нелинейной теории было показано, что все взаимодействия априори входят в общее выражение для тензора напряжений Коши. Это непосредственно следует из введения объективных скоростей изменения во времени (7.2.2). Выражение (7.3.6) показывает, что тензор напряжений Коши может быть сильно нелинеен по поляризации, а добавочное слагаемое в тензоре напряжений, связанное с t " , войдет, за исключением случая полностью линейной теории, даже в линеаризованную теорию, когда имеются интенсивные начальные поля (такова ситуация в сегнетоэлектриках, см. 7.9). Для обобщенных внутренних сил а, и в рамках феноменологического подхода нужны определяющие уравнения. Для этого должны быть развиты исключительно термодинамические аспекты теории (см. ниже). Однако, хотя нас будет в основном интересовать термодинамически полностью обратимое описание (упругость), отметим, что эти три полевые величины сг, Е а Е, вообще говоря, имеют как диссипативные, так и не-  [c.438]


В книге даны основы механики сплошной среды (МСС) физическая трактовка основных понятий и статистическое обоснование законов МСС аксиоматика МСС кинематика и теория внутренних напряжений в средах физические законы — сохранения массы, импульса, энергии и баланса энтропии методы получения замкнутых систем уравнений, основные типы граничных условий и постановки краевых задач МСС. Даны замкнутые системы уравнений для классических сред (газов, жидкостей, упругих тел) и для сред со сложными свойствами (вязко-упругих, нелинейно вязких, упруго- и вязко-пластических, плазмы и др.) при действии электромагнитного поля. Дана теория размерностей и подобия с ревизионным анализом уравнений МСС, критериями подобия и моделирования, с примерами автомодельных решений.  [c.3]

В настоящей главе приводится краткая сводка основных положений, понятий и терминов из нелинейной теории упругости, которые необходимы при проведении по еле довательной линеаризации определяющих соотношений динамики предварительно напряженных тел в окрестности их некоторого начального напряженного состояния, а также для цельности и прозрачности изложения линеаризованной теории динамических контактных задач для предварительно напряженных сред. Сведения носят справочный характер и не претендуют на полноту и по с л е д овате льно сть.  [c.10]

Роль теплопередачи в нелинейной динамической теории упругости понята дд сих пор еще недостаточно. Теория упругости есть по существу теория термоупругости. В основных уравнениях изотермической эла-стостатики тепловые члены опускаются. Обращаясь к ситуациям, когда тепловые члены существенны, мы, не добавляем их в изотермические уравнения, а возвращаемся к первоначальным уравнениям, из которых были выведены изотермические. Поскольку отсутствие тепловых членов приводит к большим математическим упрощениям, особую важность в динамической теории упругости приобретает случай нулевой теплопроводности, илн адиабатическое деформирование. Прн адиабатическом деформировании можно решить много задач (см. гл. 2—4), которые в настоящее время не поддаются решению с учетом теплопередачи. Весьма важным является вопрос, в какой мере эти адиабатические решения представляют собой приближения к полным решениям для теплопроводных сред. Для немногих известных полных решений (гл. 5) ответ гласит, что адиабатическое приближение является достаточным, если исключить области быстрых изменений. В более общем случае вопрос остается открытым.  [c.8]


Смотреть главы в:

Динамические задачи нелинейной теории упругости  -> НЕЛИНЕЙНАЯ ТЕОРИЯ УПРУГОСТИ Основные понятия



ПОИСК



25 — Понятие упругости — Понятие

Нелинейная теория

Нелинейная теория упругости

Теория упругости

Упругость Теория — см Теория упругости

Упругость нелинейная



© 2025 Mash-xxl.info Реклама на сайте