Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

НЕСТАЦИОНАРНЫЕ ДИНАМИЧЕСКИЕ ЗАДАЧИ ВЯЗКОУПРУГОСТИ

НЕСТАЦИОНАРНЫЕ ДИНАМИЧЕСКИЕ ЗАДАЧИ ВЯЗКОУПРУГОСТИ  [c.158]

В этом разделе при помощи принципа соответствия будет проведен анализ динамических задач для вязкоупругих тел как при стационарных периодических режимах, так и при нестационарных режимах нагружения. Для того чтобы можно было непосредственно использовать упругие решения, будем предполагать, что не происходит старения материала и что поле температур стационарно или хотя бы что необратимые изменения в свойствах материала малы в течение каждого цикла нагружения или в течение времени нестационарного воздействия. Напомним дополнительные требования, состоящие в том, что конфигурация граничных поверхностей не меняется (за исключением малых перемещений) и что граничное условие в напряжениях не может смениться условием в перемещениях, и обратно.  [c.165]


В использовании явления замораживания для определения напряжений при объемном напряженном состоянии. Затем были найдены пути решения плоских задач при динамических (циклических и нестационарных) нагрузках и некоторых задач вязкоупругости и пластичности. Наконец, применение тонких пленок или листов из оптически чувствительного материала, приклеиваемых на поверхности натурных конструкций, еще больше расширило область применения поляризационно-оптического метода.  [c.10]

Анализ вибрации и распространения волн в вязкоупругих композитах проведен в [1]. Причем основное внимание уделено расчету поведения при стационарном гармоническом нагружении. Хорошо известно, что, используя свойство интеграла Фурье, решения для стационарного случая можно применить для расчета поведения при нестационарных воздействиях произвольного вида. Обсудим вкратце этот подход с точки зрения применения к решению задачи алгоритма FFT [20]. В динамическом анализе композитов используются и другие методы, например преобразование Лапласа [1] и метод характеристик [21]. Однако есть основания полагать, что точность и вычислительная эффективность алгоритма РТТ плюс легкость получения стационарного поведения при помощи упругих решений делают этот подход наиболее привлекательным. Здесь представляет интерес также удобство применения численных или очень общих аналитических представлений комплексных модулей (податливостей).  [c.196]

Может показаться неожиданным, что использование интегральных представлений для анализа нестационарных процессов в твердых телах и жидкостях имеет длинную историю. В большинстве таких задач часть границы уходит на бесконечность в этом случае интегральные представления особенно удобны и методы граничных элементов используются чрезвычайно широко. В работах [1—12] дается хороший обзор классических работ по динамической теории упругости и близким к ней вопросам. Хотя основные интегральные представления в динамической теории упругости и задачах распространения волн известны значительно более ста лет, для разработки численных алгоритмов при решении граничных задач они начали применяться сравнительно недавно. В начале шестидесятых годов появились первые примеры численных решений, например [13—16], за которыми последовали другие [17—38]. Связанные с этим задачи квазистатической вязкоупругости исследовались в работах [20, 39—41], в которых использовался прямой МГЭ.  [c.275]


Хуторянский Н. М. Метод гранично-временных интегральных уравнений в нестационарных динамических задачах вязкоупругости.— Прикладные проблемы прочности и пластичности, 1979, № 12, с. 11—17.  [c.330]

Хуторянский Н. М. Метод гранично-временных интегральных уравнений в нестационарных динамических задачах вязкоупругости. — Прикладные проблемы прочности и плаютичности. Механика деформируемых систем. Всесоюз. М1бжвуз. сб. /Горьк. ун-т, Ш79, с. 1Р— 117,.  [c.290]

Методы граничных элементов можно использовать для решения нестационарных задач, таких, как задачи о неустановившемся тепловом потоке, задачи линейной вязкоупругости и динамические задачи теории упругости. Примеры подобных приложений можно найти в статьях 19, 39] для теплового потока, [41] для вязкоупругости и [11, 16, 19] для эластодинамики.  [c.14]

Вопросы, связанные с исследованием нестационарных процессов деформирования неоднородных конструкций, материалы которых проявляют реологические свойства, пока мало изучены. Здесь можно отметить несколько работ, посвященных решению некоторых частных задач. Гровер и Капур (A.S. Grover, A.D. Kapur) [388, 389] исследовали нестационарный отклик трехслойной прямоугольной пластины, подверженной воздействию импульсной нагрузки в форме полуволны синуса. Свойства вязкоупругого заполнителя учтены посредством использования механической модели, состоящей из двух упругих и двух вязких элементов. Авторами статьи [469] рассмотрено динамическое поведение симметричной трехслойной оболочки, состоящей из композитных несущих слоев и вязкоупругого заполнителя. Предусмотрена возможность воздействия на оболочку случайного равномерного давления или случайной сосредоточенной нагрузки. Решение получено методом Бубнова-Галеркина.  [c.17]


Смотреть главы в:

Метод граничных элементов в механике деформируемого твердого тела  -> НЕСТАЦИОНАРНЫЕ ДИНАМИЧЕСКИЕ ЗАДАЧИ ВЯЗКОУПРУГОСТИ



ПОИСК



Вязкоупругости задачи

Вязкоупругости задачи г--нестационарный динамический отклик

Вязкоупругости задачи динамические

Вязкоупругость

Задача нестационарная

Задачи динамические

Нестационарность



© 2025 Mash-xxl.info Реклама на сайте