Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность или вязкость при ползучести

Пластичность или вязкость при ползучести  [c.62]

Пластичность или вязкость материалов, характеризующая процесс разрушения при ползучести, определяются путем испытаний на длительную прочность образцов с надрезом. Если сравнить время до разрушения при ползучести цилиндрических образцов с кольцевым надрезом и гладких цилиндрических образцов, то часто оказывается, что образцы с надрезом имеют большую долговечность. Однако у некоторых материалов, подвергнутых соответствующей термообработке при определенных температурах и напряжениях, долговечность образцов с надрезом ниже.  [c.64]


Охрупчивание вследствие потери пластичности или вязкости, или и того и другого, материалом, обычно металлом или сплавом. Много форм хрупкости могут вести к хрупкому разрушению. Много форм могут встречаться при термической обработке или использования при высокой температуре (термическая хрупкость). Некоторые из видов хрупкости, которые действуют на сталь, — это синеломкость, 475 °С (885 °F), хрупкость, хрупкость старения, сигма-фазовая хрупкость, хрупкость деформационного старения, хрупкость при закалке, хрупкость закаленного мартенсита. Кроме того, сталь и другие металлы могут охрупчиваться под воздействием окружающей среды. Формы такой хрупкости включают кислотную хрупкость, щелочную хрупкость, охрупчивание при ползучести, коррозионную хрупкость, водородную хруп-  [c.949]

К основным механическим свойствам металлов относят прочность, твердость, упругость, пластичность, ударную вязкость. Прочность — способность металла сопротивляться разрушению или появлению остаточных деформаций под действием внешних сил. Большое значение име т удельная прочность, ее находят отношением предела прочности к плотности металла. Для стали прочность выше, чем для алюминия, а удельная прочность ниже. Твердость — это способность металла сопротивляться поверхностной деформации под действием более твердого тела. Упругость — способность металла возвращаться к первоначальной форме после прекращения действия сил. Пластичность — свойство металла изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом. Ударная вязкость — способность металла сопротивляться разрушению под действием динамической нагрузки. Кроме указанных механических свойств можно назвать усталость (выносливость), ползучесть и др. Для установления характеристик механических свойств производят их испытания.  [c.30]

Испытание на ползучесть иногда дополняется испытанием на длительную прочность, выявляющим способность металла или сплава длительно противостоять при высоких температурах разрушению без уменьшения вязкости и пластичности.  [c.101]

Под основными механическими свойствами материалов понимаются их прочность, упругость, пластичность, вязкость, ползучесть, выносливость, твердость и изнашиваемость. Большинство материалов характеризуется величиной напряжений, деформаций или работ, которые выдерживает металл при заданных условиях.  [c.5]

Сталь перед сваркой подвергают термической обработке на высокую прочность (нормализация или закалка с высоким отпуском). После сварки предусматривается отпуск для снятия напряжений и выравнивания механических свойств в различных участках соединений. К сварным соединениям предъявляется требование равнопрочности с основным металлом в сочетании с определенными значениями ударной вязкости, пластичности и ряда специальных свойств, характеризующих работоспособность соединений в соответствующих условиях (например, критическая температура хрупкости и сопротивление хрупкому разрушению в условиях ударных или статических нагрузок при низких температурах пределы длительной прочности и ползучести сопротивление локальному разрушению при повышенных температурах и сложном напряженном состоянии и т. д.).  [c.42]


Таким образом, по результатам испытаний на длительную прочность образцов с надрезом можно, определив ОДПН или оценить пластичность или вязкость при ползучести. Величина ОДПН изменяется [22 ] в зависимости от коэффициента концентрации напряжений, радиуса надреза, формы надрезанного образца (плоский или цилиндрический). Поэтому, чтобы понять механизм образования и распространения трещин при ползучести, необходимо дать точное определение такому характеристическому свойству материала как вязкость и установить метод ее определения.  [c.66]

Регулируя объемную долю и расстояние между волокнами (пластинами) мягкой или жесткой упрочняющей фазы, можно менять характеристики низкотемпературной пластичности или вязкости разрушения и длительной прочности, сопротивления ползучести. Так, уменьшение расстояния между пластинами вязкой у-фазы (Fe—Ni) в случае направленной кристаллизации композита NiAl/y с 12...15 до 2,2 мкм при одинаковом напряжении 30 МПа при 825 °С приводит к понижению скорости ползучести композита приблизительно на три порядка. Волокно или пластины ОЦК-тугоплавких металлов (твердых растворов на основе хрома, молибдена сечением 0,2...1,0 мкм) обеспечивают высокую жаропрочность при удовлетворительной низкотемпературной вязкости разрушения, а включения фазы Лавеса NiAlMe со структурой типа С14 сечением < 0,5 мкм увеличивают прочность при высоких температурах.  [c.222]

Молибден повышает прочностные свойства стали, не снижая ее пластичности и вязкости, а также сообщает стали высокие прочностные свойства при повышенных температурах, уменьшая ее склонность к ползучести Молибден способствует глубокой прокаливаемости стали, придает ей мелкозернистость и предотвращает образование отпускной хрупкости в хромистых и других легированных сталях. Молибден является также карбидообразующим элементом и потому находится в стали в основном в виде карбидов типа М0С2 или РезМозС, но частично также растворен в феррите  [c.207]

Дальнейшее обобщение линейной теории вязкоупругости состоит в переходе к нелинейным уравнениям вида (10.41) или (10.42), т. е. к соотношениям указанного вида при нелинейных операторах Р и R. Нелинейная теория вязкоупругостн позволяет получить достаточно хорошее описание ползучести бетона и полимеров при различных режимах, в том числе неизотермических. В то же время этой теорией не охватываются необратимые процессы, протекающие мгновенно (атермическая пластичность) такие явления, как было указано, характерны в первую очередь для металлов. Тела, обладающие упругостью, вязкостью и пластичностью, описываются теорией упруго-вязко-пластических сред. Реологические уравнения этой теории уже не могут быть представлены в виде (10.41) или (10.42) (даже при нелинейных операторах Р и R ) подобно тому, как соотношения между напряжениями и деформациями для упруго-пластического тела нельзя записать в виде конечных (функциональных) связей. В рамках упомянутой теории и следует искать описание поведения металлов при достаточно высоких температурах.  [c.754]

Последующее развитие техники полностью подтвердило справедливость мнения В. Л. Кирпичева с существенными уточнениями пластичность необходима не только при наличии ударов, но часто при статических нагружениях для элементов конструкций важна прежде всего местная, а не общая пластичность полезное влияние (увеличение локального энергопоглощения) могут оказывать местные неупругие деформации разной природы, а не только пластические, например вязкие. Выход за пределы чисто упругого состояния вызывается общими или локальными явлениями, существенно повышающими энергопоглощение пластическими или вязкими сдвигами, двойникованием, диффузионными и дислокационными процессами, перемещениями вакансий и т. д. При этом существенно увеличивается скорость нарастания деформаций и соответственно возрастает величина деформации. Например, у сталей наибольшее упругое удлинение имеет величину порядка 1 % (за исключением нитевидных кристаллов, упругое удлинение которых может достигать 5% и более), в то время как наибольшая пластическая деформация достигает десятков процентов. Большинство расхождений между выводами из расчетов теории упругости и сопротивления материалов с результатами механических испытаний и опытом эксплуатации Изделий является следствием проявления неупругих состояний. Эти проявления могут быть как полезными, способствующими местному благоприятному перераспределению напряжений при выходе за пределы упругого состояния, так и вредными чрезмерная общая деформация изделий вследствие текучести и ползучести, затрудненная обработка резанием ввиду высокой вязкости, плохая прирабатываемость и наволакивание материала при трении и т. п.  [c.107]



Смотреть страницы где упоминается термин Пластичность или вязкость при ползучести : [c.176]    [c.7]    [c.235]    [c.213]    [c.232]    [c.13]   
Смотреть главы в:

Теория высокотемпературной прочности материалов  -> Пластичность или вязкость при ползучести



ПОИСК



Вязкость ползучести

ПЛАСТИЧНОСТЬ И ПОЛЗУЧЕСТЬ



© 2025 Mash-xxl.info Реклама на сайте