Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рений-рутений

Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий).  [c.39]


Из приведенных данных видно, что наиболее перспективными металлическими диффузионными барьерами для вольфрама являются рений, рутений и иридий, а для молибдена — рений. Однако вопрос о взаимодействии таких барьерных слоев с жаростойкими покрытиями изучен недостаточно.  [c.225]

У металлов 4-го периода — марганца, железа и кобальта — наблюдается аномалия, обусловленная высокими потенциалами ионизации, а следовательно, и менее ярко выраженными металлическими свойствами по сравнению с их более тяжелыми аналогами — технецием, рением, рутением, родием, осмием и иридием. Провал энергии межатомной связи у марганца непосредственно связан с низкой электронной концентрацией.  [c.41]

Электроосаждение сплава рений—рутений.  [c.600]

Рений Не Рутений Ки Иттрий 3180 3170 — — Испарение электронной пушкой  [c.430]

Палладий Pd Платина Pt Плутоний Ри Празеодим Рг Рений Re Родий Rh Ртуть Hg Рубидий Rb Рутений Ru Самарий Sm Свинец РЬ Селен Se Сера S Серебро Ag Скандий S Стронций Sr Сурьма Sb Таллий Т1 Тантал Та Теллур Те Тербий ТЬ Титан Ti Торий Th Тулий Ти  [c.9]

Платина (Pt) Рений (Re). Родий (Rh). Ртуть (Hg). Рутений (Ru) Свинец (РЬ).  [c.918]

Платима (Pt). . , Рений (Re). ... Родий (Rh),. . , Ртуть (Н ). ... Рутений (Ru). , Свиней РЬ). . . Серебро (Ag).. . Сурьма (Sb). , . Таллий (Т1). .. Тантал (Та). , , Титан (Ti). . . . Торий (I h). ..  [c.426]

Легирование коррозионностойких сталей палладием, платиной, рутением, рением.  [c.123]

Для улучшения способности к смачиванию и сцеплению с паяемым металлом—медью в висмутовые припои вводят до 0,5—5% железа, никеля, кобальта, платины, иридия, рутения, осмия, рения, палладия, золота.  [c.78]

В качестве катодных легирующих присадок могут быть использованы различные электроположительные металлы, как палладий, платина, рутений и ряд других металлов платиновой группы, а в некоторых условиях даже и менее благородные металлы, как рений, медь, никель, молибден, вольфрам и др.  [c.19]

Металлические связи, появляющиеся между ближайшими соседями вдоль направлений (111) вследствие перекрывания (е5)-орбиталей и концентрации d-электронов между ядрами, упрочняют и стабилизируют ОЦК структуру от металлов группы скандия (III гр.) и титана (IV гр.) к металлам VI группы (хром, молибден, вольфрам). Близость электронного строения, определяющая идентичность ОЦК структур, способствуют образованию широких или непрерывных областей ОЦК твердых растворов между тугоплавкими металлами IV—VI групп и создают широкие возможности твердорастворного упрочнения путем взаимного легирования этих металлов. Наряду с повышением высокотемпературной прочности такое легирование в ряде случаев позволяет значительно повысить жаростойкость при газовой коррозии в агрессивных средах. Введение в тугоплавкие ОЦК металлы до 25—30% рения, а также рутения или осмия, которые вследствие неполной ионизации имеют плотную гексагональную структуру, но при растворении в ОЦК металлах передают в коллективизированное состояние все валентные электроны, приводит к сильному повышению пластичности ванадия,, хрома, молибдена и вольфрама ( рениевый эффект ). Такое повышение пластичности хрупких металлов интересно с точки зрения теории легирования и нашло определенное практическое применение  [c.39]


Как установил Н. Д. Томашов, введение в титан катодных добавок, таких как палладий, платина, рутений, рений и др., приводит к резкому уменьшению скорости коррозии в растворах серной, соляной и фосфорной кислот. Так, например, при содержании 0,2% Р(1 скорость коррозии титана в 5%-ном растворе НгЗО при температуре кипения уменьшается в 50 раз.  [c.142]

По данным [35] износ контактов из сплавов платины с иридием (25 и 40% 1г) при искровом разряде меньше, чем сплавов платины с рением, молибденом, родием или рутением.  [c.590]

Радий. ... Рений.. . .. Родий.. . . Ртуть. ... Рубидий. . Рутений.. .  [c.971]

Многочисленные цветные металлы в свою очередь подразделяются в зависимости от физико-механических свойств на ряд групп тяжелые (медь, никель, свинец, цинк, олово) легкие (алюминий, магний, кальций, бериллий, титан, литий, барий, стронций, натрий, калий, рубидий, цезий) благородные (золото, серебро, платина, осмий, рутений, родий, палладий) редкие металлы. Последние в свою очередь условно делят на тугоплавкие (вольфрам, молибден, ванадий, тантал, ниобий, цирконий) редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.) рассеянные (германий, рений, селен и др.) и радиоактивные (уран, торий, радий, протактиний).  [c.20]

При маркировке цветных сплавов приняты следующие обозначения А - алюминий Б - бериллий Бр - бронза В - вольфрам Г - германий Гл - галлий Ж - железо Зл - золото И - иридий К - кремний Кд - кадмий Ко - кобальт Л - латунь М - медь Мг - магний Мц - марганец Мш - мышьяк Н - никель Нд - неодим О - олово Ос - осмий Пд -палладий Пл - платина Р - ртуть Ре - рений Рд - родий Ру - рутений С - свинец Ср - серебро Сл - селен Су - сурьма Ти - титан Тл - таллий ТТ - тантал Ф - фосфор X - хром Ц - цинк.  [c.568]

Платина (Pt). Рений (Ре). . Родий (КЬ). . Ртуть (Н ). . Рутений (Ни), Свинец (РЬ).  [c.71]

Как видно из рис. 9, возможно получение из водных растворов покрытий марганцем, технецием, рением, рутением, осмием, иридием, галлием, германием, мышьяком, сурьмой и висмутом. Мало вероятно применение покрытий технецием из-за его редкости, хотя в соответствии с положением в периодической системе элементов Д. И. Менделеева электроосаждение технеция из водных растворов приципиально возможно. Об электроосаждении осмия и иридия в водных растворах нет достаточных материалов, чтобы говорить об их практическом использовании.  [c.80]

Полоний не взаи.модействует с рядом элементов при нагревании до следующих температур, °С с углеродом, алюминием и железом до 700 с азотом и кремнием до 850 с кобальтом до 900 с серой, хромом и технецием до 1000 с рением до 1040 с рутением и осмием до 1050 с молибденом, танталом и вольфрамом до 1600 [24],  [c.64]

Технеций растворяется в серной кислоте, перекиси водорода, бромной воде, в смеси соляной кислоты и перекиси водорода легко окисляется азотной кислотой. Известны соединения технеция с кислородом, серой, галоидами, фосфором, азотом, углеродом. Непрерывные ряды твердых растворов образует технеций с рутением, осмием, рением, легирование нержавеющей стали технецием улучшает ее коррозионную стойкость. Литой металл чистотой 99,92 % при 20 С хрупок он растрескивается при незначительных обжатиях холодной прокатки. После выдавливания и вакуумного отжига при 1300 X технеций выдерживает холодную прокатку с обжатиями 15—20 % за проход и волочение с обжатием 10 % за проход. Из технеция можно изготовлять прутки, проволоку, ленту и фольгу. Упрочнение при деформировании технеция намного больше, чем платины, но ниже, чем рения.  [c.141]

Рений (покрштие) Re Родий Rh Рутений Ru РЬ и РЬ сплавы Свинец СЭ, СО, С1  [c.252]

Трой и Стевен [57] также занимались изысканием термопар. Они для работы при высоких температурах исследовали несколько термопар из тугоплавких и редких металлов. Эта работа по существу явилась продолжением работы Шульце, который в 1938 г. [58] предложил следующие термопары платина —платина +8% рения (до 1600°) родий—платина+ +8% рения (до 1800°) родий — родий -t-8% рения (до 1900°) иридий — иридий +10% рутения (до 2300°). Было установлено, что сплав платины с 8% рения при рекристаллизащ и делается хрупким. Трой и Стевен исследовали различные комбинации вольфрама, молибдена, тантала, платины, родия, иридия, а также сплавы из этих металлов и определяли их э. д. с. в нейтральной атмосфере. Они пришли к выводу, что оптимальными свойствами обладает вольфрам-иридиевая термопара, которая имеет высокую э. д. с. выше 1000°, незначительную э. д. с. при комнатной температуре и почти линейную градуировочную зависимость между 1000 и 2100°. Было обнаружено, что после выдержки при высоких температурах в атмосфере  [c.100]


Высокие температуры плавления имеют также плотноупакован-ные металлы VIII—X групп рений (3180° С), рутений (2250°) родий (1960°), осмий (3045°), иридий (2445°), палладий (1552°) и платина (1769° С), однако вследствие малой распространенности и высокой стоимости эти металлы не перспективны для использования в качестве жаропрочных. Лишь пла гина и некоторые ее сплавы нашли ограниченное применение для тиглей, используемых при варке оптического стекла и для других специальных областей. Эти металлы имеют одинаковые плотноупакованные структуры вследствие заполнения валентными электронами второй половины оболочки или состояния Близость их электронного и кристаллического строения также обусловливают образование при взаимном растворении широких или непрерывных рядов ПГ или ГЦК растворов и широкие возможности твердорастворного упрочнения.  [c.39]

Главное отличие изменения упругих модулей с увеличением атомного номера от соответствующих изменений термодинамических характеристик заключается в смещении максимумов с молйбдена и вольфрама на рутений и осмий. Причиной этого может быть переход от ОЦК структуры молибдена и вольфрама к более плотной гексагональной структуре технеция, рутения, рения и осмия. Упругие модули возрастают от щелочных металлов к высоковалентным металлам VIII группы по мере увеличения электронной концентрации, а затем с уменьшением числа коллективизированных электронов до 1 эл/атом при переходе к металлам I группы величина упругого модуля падает.  [c.46]

P-Zr, P-Hf (dV), стабилизированных хромом, ниобием и другими элементами V, VI групп, к V, Nb, Та (dV) и достигающий максимума у Сг, Мо, W (dV) вследствие заполнения е -состояния четырьмя лг4,2-электронами и максимальной плотности электронных связей [59]. Дальнейшее повышение концентрации d-электронов путем введения рения и технеция (dV), рутения, осмия (dV) ведет сначала к понижению модуля С в области ОЦК твердых растворов, а затем, по достижении критической концентрации около 25—30 ат. % рения, происходит переход сначала к промежуточной а-фазе, а затем к плотной гексагональной структуре рения, технеция, рутения, осмия и растворов на их основе. Добавки 10—30% Re (или Тс) к Сг, Мо, W повышают пластичность этих малопластичных металлов, что известно как рениевый эффект . Стабилизация ОЦК структуры в ряду скандий—хром есть следствие заполнения eg- o-стояния и усиления металлических связей вдоль орбиталей dxyz, направленных в виде электронных мостиков от центрального атома в ОЦК решетке к угловым атомам по объемным диагоналям <111>.  [c.53]

Тщательное изучение электронных характеристик переходных металлов и их сплавов в связи с разработкой сверхпроводящих материалов выявило, что свойства металлов IV и VI групп не изменяются монотонно, как модуль С, а имеют низкие значения для титана, циркония, гафния, далее проходят через максимум вблизи металлов V группы — ванадия, ниобия и тантала — (4,7—4,8 эл/атом), тогда как электронным концентрациям, лежащим вблизи металлов VI группы — хрома, молибдена, вольфрама и равным 5,7—6,0 эл/атом, вновь отвечает минимум. При переходе к металлам VII—VIII групп наблюдается второй максимум вблизи технеция и рения (6,7—7 эл/атом), а затем новый минимум, приходящийся на рутений и осмий (8 эл/атом).  [c.54]

Дальше, при переходе к технецию, рению ( V) и металлам VIII группы — рутению, осмию (dV) — вне заполненного сильно связанными электронами % ( )-состояния вначале появляются 1—2 почти свободных избыточных d-электрона, заполняющих 4г-состояние, и электронная теплоемкость вновь растет, достигая максимума вблизи технеция и рения ( t + d s ). При переходе к рутению и осмию ( + dV) и далее она вновь падает. Таким образом,  [c.55]

Эти рассуждения, относящиеся к состояниям зоны проводимости, были использованы в работе [49] для объяснения возникновения локальных магнитных моментов в переходных 4 -элементах с примесью железа (3d 4s2) (фиг. 52). При этом концентрация железа в этих сплавах бывает порядка 1%. Отсутствие локальных магнитных моментов в области между рением id4s ) и рутением  [c.129]

Блафер и Халм [10] обнаружили сверхпроводимость в двойных (Г-фазах, образованных ниобием, молибденом, танталом и вольфрамом с рутением, родием, палладием, рением, осмием, иридием и платиной (аналогичные исследования были проведены на соединениях со струйтурой типа а-марганца). При этом на кривых зависимости критической температуры перехода в сверхпроводящее состояние от электронной концентрации наблюдался максимум при значении концентрации, равном 6,5 (подобно наблюдавшемуся у соединений со структурой Р-вольфрама). Предполагается, что подобное явление связано с максимумом плотности состояний на поверхности Ферми при данном значении электронной концентрации.  [c.250]

Под тугоплавкими условно понимают металлы, температура плавления которых превышает температуру плавления хрома (1875° С). Таким образом, к тугонлавким металлам в порядке возрастания температур плавления следует отнести хром, ванадий, родий, гафний, рутений, иридий, молибден, тантал, ниобий, осмий, рений и вольфрам.  [c.460]

Химически технеций, как и было предсказано [125, 69], стоит ближе к рению, чем к марганцу. Его гидроокись растворяется в растворах аммиака с образованием анионов и в растворах соляной кислоты или хлористого олова с образованием катионов. Катионный или анионный характер можно обнаружить по адсорбции на кислой или основной окиси алюминия [38]. Технеций отличается от марганца тем, что его сульфид не растворяется в разбавленных кислотах, он не осаждается с двуокисью марганца, его окись возгоняется при 400—500° С. Отделение от рения является более трудной задачей, чем отделение его от марганца. Частичного разделения можно достигнуть путем дробной кристаллизации калийных солей, а полного разделения можно достигнуть отгонкой при 200° С рения вместе с хлористым водородом из раствора в серной кислоте. В противоположность технецию, рутений вытесняется хлором из кипящего раствора. Для отделения технеция от материнского молибдена можно использовать реакцию осаждения молибдена с бензидином или оксином или же экстрагировать хлористый молибден эфиром. Полного отделения от металлической молибденовой мишени можно достигнуть путем  [c.88]


Осаждение прочих металлов. Кроме указанных металлов в современной гальванотехнике пр.чменяется осаждение иридия, рутения, рения, галлия и таллия, а также некоторых других, которые не относятся к категории редких, но и не входят в группу металлов, широко применяе.мых в качестве защитно-декоративных покрытий. К ним относятся висмут, марганец и сурьма. Все эти металлы редко применяются в промышленности и используются главным образом при лабораторных исследованиях. Поэтому в настоящем справочнике технология их осаждения не приводится. Исключение представляет сурьма, осаждение которой используется для частичной замены оловянных покрытий под пайку, для покрытия печатных радиотехнических схем, для замены кадмия в условиях морской коррозии и в других отраслях машиностроения. Сурьма—серебристо-белый металл с уд. весом 6,88 и температурой плавления 630,5° С.  [c.167]

Гафний (свыше 5%) н рутений в сплавах тантала приводят к растрескиванию сварных соединений. В сварных соединениях сплава Та—5% — 2,5% Ке также наблюдали трещины, что свидетельствует об охрупчивающем действии рения.  [c.377]

Никель Ниобий Олово Осмий Палладий Платина Полоний Празеодим Протактиний Радий Рений Родий Ртуть Рубидий Рутений Самарий Свинец обыкновенный Свинец тори-евый Свинец урановый Селен Сера Серебро Скандий Стронций Сурьма Таллий Тантал Теллур Тербий Титан Торий Тулий Углерод Уран Фосфор Фтор Хлор Хром Цезий Церий Цинк Цирконий Эманация Эрбий  [c.27]

Покрытие другими металлами. Для гальванических гюкрытий используются также следующие металлы индий, рутений, вольфрам, алюминий, молибден, бериллий, рений, торий, тантал, теллур, ди рконий. Промышленное применение этих металлов для покрытий пока еще незначительно, за исключением индия и вольфрал а, сплавы которых в настоящее время все шире используются в промышленности.  [c.223]

В промышленности использзтот преимущественно сплавы этих металлов, упрочняемые путем упрочнения твердого раствора и образования мелкодисперсной фазы. Наиболее сильными упрочнителями для ниобия являются цирконий, гафний, вольфрам, молибден, ванадий для тантала - ванадий, молибден, гафний, вольфрам, а также рутений, рений, осмий для ванадия - титан, цирконий, ниобий, вольфрам. Для получения сплавов с повышенной жаропрочностью на основе ниобия и тантала в качестве легирующих элементов используют углерод, азот, бор, которые наряду с некоторым упрочнением твердого раствора образ тот вторую дисперсн)то фазу (карбиды, нитриды, бориды), упрочняющую металл особенно эффективно при одновременном введении титана, циркония, гафния. Из рассматриваемых металлов V группы наибольшее применение имеют сплавы на основе ниобия.  [c.151]

Литий Натрий. Калий Рубидий. Цезий. . Медь. . Серебро. Золото Бериллий Магний. Кальций Стронций Барий, . Радий. . Цинк. . Кадмий Ртуть. . Бор. . . Алюминий Скандий. Иттрий Лантан. Актиний Галлий Индий Таллий Кремний Германий Олово. . Свинец Титан. . Цирконий Гафний. Ванадий. Ниобий. Тантал Сурьма. Висмут Хром. . Молибден Вольфрам Селен. . Теллур. Марганец Рений. . Железо. Кобальт. Никель Рутений. Родий. . Палладии Осмнй. . Иридий. Платина Торий. . Уран. . Лантан Церий  [c.293]

Непрерывные твердые растворы с никелем дают маргаиец, железо, кобальт, медь, палладий, родий, иридий, плагина. Ограниченные твердые растворы с никелем образуют бериллий, бор, углерод, магний, алюминий, кремний, фосфор, титан, ванадий, хром, цинк, галлий, германий, мышьяк, цирконий, ниобий, молибден, рутений, индий, олово, сурьма, лантан, тантал, вольфрам, рений, осмий, висмут и уран.  [c.340]


Смотреть страницы где упоминается термин Рений-рутений : [c.119]    [c.195]    [c.249]    [c.69]    [c.396]    [c.36]    [c.36]    [c.555]    [c.21]    [c.460]    [c.460]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Рений-рутений



ПОИСК



Рений

Реньи

Реньо

Рутений



© 2025 Mash-xxl.info Реклама на сайте