Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ударное взаимодействие упругих тел

Ударное нагружение происходит при соударении тел. Будем рассматривать удар движущегося тела по неподвижной упругой системе. Размеры площадки, по которой происходит контактное взаимодействие тела с системой, будем считать малыми в сравнении с характерным размером системы, чтобы возникающие силы ударного взаимодействия можно было считать сосредоточенными в точке удара.  [c.449]

Деформации системы при ударном взаимодействии можно разделить на локальные и общие. Локальные деформации сосредоточены вблизи точки удара. Они зависят от механических свойств материала как ударяющего тела, так и системы, от формы соударяющихся поверхностей в районе их контакта и т.д. Здесь возможен широкий диапазон моделей — от абсолютно упругого до абсолютно неупругого удара.  [c.449]


Книга содержит обзорные и оригинальные статьи ведущих российских ученых по основным разделам нелинейной механики. Излагаются вопросы составления и анализа уравнений движения механических систем с различными связями (в том числе и с односторонними с учетом ударных явлений), в различных силовых полях (в том числе при наличии сил сухого трения). Обсуждаются вопросы корректности тех или иных моделей механики, вопросы интегрируемости и детерминированного хаоса, вопросы устойчивости и теории возмущений. Исследуются разнообразные конкретные механические системы задача трех тел с учетом их несферичности или упругости, задачи динамики космических аппаратов, задачи динамики твердых тел в различных силовых полях (в том числе с учетом ударных взаимодействий и сил сухого трения), задача динамики твердого тела со струнным приводом, орбитальные тросовые системы и т. д.  [c.3]

Я полностью изгоняю присущие движущемуся телу силы, как понятия неясные и метафизические, способные лишь распространить мрак над ясной самой по себе наукой [29, с. 24]. Это намерение Даламбера представляется вполне естественным, так как физическое и даже философское содержание понятия силы, его математические интерпретации в работах его великих предшественников были очень различными. Это силы тяжести, движущие силы, силы постоянные и переменные, импульсы, аналоги момента, работы, центробежные, центростремительные, живые и мертвые, ускоряющие, инерции, сопротивления среды, притяжения и отталкивания, ударные и упругие, мгновенные, виртуальные,. .. Даламбер подчеркивает, что реально существуют только тела, их движения и взаимодействия. Он считает, что о причине движения можно судить по чисто кинематическим характеристикам движения, поэтому и принципы механики должны выражать геометрические свойства движения.  [c.260]

В настоящей главе мы дадим обзор некоторых аспектов теории волновых и колебательных движений направленно армированных композитов при малых деформациях и линейном поведении компонентов. Некоторые основные понятия динамики упругого континуума приводятся в приложениях А и Б. Очень важным является исследование распространения механических возмущений для тел, подвергающихся высокоскоростным нагружениям, например ударным или взрывным. В течение небольших промежутков времени после приложения к образцу высокоскоростной нагрузки в нем распространяются нестационарные волны. Взаимодействие этих волн с армирующими элементами может быть достаточно сильным.  [c.356]


Удар. Рассмотрим воздействие вертикально падающего груза весом О на тело весом Оа, соединенное с некоторой упругой конструкцией, например растянутым стержнем или изгибаемой балкой (рис. 17.3). В момент контакта груза и ударяемого тела между ними развивается сила взаимодействия Р=Р ((), характерный график изменения которой во времени ( изображен на рис. 17.4. Период соударения т обычно очень мал и измеряется микро- или миллисекундами. Но в этот короткий промежуток времени развиваются очень большие ударные силы взаимодействия. Поэтому хотя отрезок т ничтожно мал, импульс, сообщаемый ударяемому телу Оо, имеет вполне определенное конечное значение  [c.472]

Для определения времени У,, ударных сил и вызванных ими в телах напряжений и деформаций необходимо учесть механич. свойства материалов тел и изменения этих свойств за время У., а также характер начальных и граничных условий. Решение проблемы существенно усложняется не только из-за трудностей чисто матем. характера, но и ввиду отсутствия достаточных данных о параметрах, определяющих поведение материалов тел при ударных нагрузках, что заставляет делать при расчётах ряд существенных упрощающих предположений. Наиб, разработана теория У. совершенно упругих тел, в к-рой предполагается, что тела за время У. подчиняются законам упругого деформирования (см. Упругости теория) и в них не появляется остаточных деформаций. Деформация, возникшая в месте контакта, распространяется в таком теле в виде упругих волн со скоростью, зависящей от физ. свойств материала. Если время прохождения этих волн через всё тело много меньше времени У., то влиянием упругих колебаний можно пренебречь и считать характер контакт ных взаимодействий при У. таким же, как в статич. состоянии, На таких допущениях основывается контактная теория удара Г. Терца (G. Hertz), Если же время прохождения упругих волн через тело сравнимо со временем У., то для расчётов пользуются волновой теорией У.  [c.206]

На поверхности очень хрупких изломов могут наблюдаться линии Валь-нера, представляющие собой системы пересекающихся искривленных параллельных ступенек (рис. 22). Линии Вальне-ра образуются вследствие взаимодействия фронта трещины н фронта упругой волны, отраженной от какого-либо дефекта или препятствия для развития разрушения. Макроскопические линии Вальнера практически наблюдаются лишь в хрупких немс таллических материалах — органических и неорганических стеклах и т. п. Вместе с тем неровности в форме одной или нескольких окружностей, возникающие на изломе вследствие упругой ударной волны, наблюдаются не только на изломах хрупких аморфных тел, но и в металлах (рис. 23).  [c.43]

Чем больше амплитуда ударной волны, тем ббльшую роль играют тепловые составляющие давления и энергии. При очень высоких давлениях порядка сотен миллионов атмосфер и выше, роль упругих составляющих становится малой, и вещество ведет себя практически как идеальный газ (идеальный в смысле отсутствия взаимодействия между частицами). Соответственно и ударная адиабата в этих условиях в принципе не отличается от ударной адиабаты идеального газа (с учетом процессов ионизации см. гл. III), т. е. и для твердого тела существует предельное сжатие в ударной волне. В пределе р оо температура также стремится к бесконечности, атомы полностью иониззтотся, и вещество превращается в идеальный, классический электронно-ядерный газ с показателем адиабаты у = Чз, которому соответствует предельное сжатие, равное 4 (если отвлечься от эффектов, связанных с излучением см. гл. III).  [c.552]

Интерес к нелинейным движениям деформируемых твердых тел вызывается, главным образом, тем обстоятельством, что ударные волны позволяют эффективно определить сильно нелинейные уравнения состояния ряда кристаллических тел. Линейные и нелинейные волны, распространяющиеся в электроупругих твердых телах, как, например, упругие диэлектрики и сегнетоэлектрические керамики, имеют смешанную природу, являясь одновременно как механическими, так и электрическими имеющееся электромеханическое взаимодействие позволяет осуществить прямую запись электрического сигнала, т. е. получить мгновенную картину состояния исследуемого образца. Приложения включают способ подвода энергии, возбужденной ударной волной, и устройства преобразования электромеханической энергии при сжатии кристалла ударной волной [Doran, 1968 Graham, 1972 Иванов и др., 1968].  [c.525]


У. в. в твёрдых телах. Энергия и давление в твёрдых телах имеют двоякую природу они связаны с тепловым движением и с взаимодействием ч-ц (тепловые и упругие составляющие). Теория междучастичных сил не может дать общей зависимости упругих составляющих давления и энергии от плотности в широком диапазоне для разных в-в, и, следовательно, теоретически нельзя построить функцию е(р/р). Поэтому ударные адиабаты для твёрдых (и жидких) тел определяются из опыта или полуэмпириче-ски. Для значит, сжатия твёрдых тел нужны давления в миллионы атмосфер, к-рые сейчас достигаются при эксперимент. исследованиях. На практике большое значение имеют слабые У. в. с давлениями 10 —10 атм. Это давления, к-рые развиваются при детонации, взрывах в воде, ударах продуктов взрыва о преграды и т. д. Повышение энтропии в У. в. с такими давлениями невелико, и для расчёта распространения У. в. обычно пользуются эмпирич. ур-нием состояния типа /> Л[(р/ро)"—1], где величина А, вообще говоря, зависящая от энтропии, так же, как и п, считается постоянной. В ряде в-в — железе, висмуте и др. в У. в. происходят фазовые переходы — полиморфные превращения. При небольших давлениях в твёрдых телах возникают упругие волны, распространение к-рых, как и распространение слабых волн сжатия в газах, можно рассматривать на основе законов акустики.  [c.779]


Смотреть страницы где упоминается термин Ударное взаимодействие упругих тел : [c.227]    [c.188]    [c.276]    [c.231]    [c.781]    [c.406]   
Смотреть главы в:

Сопротивление материалов Учебное пособие  -> Ударное взаимодействие упругих тел



ПОИСК



Взаимодействие упругое



© 2025 Mash-xxl.info Реклама на сайте