Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейно упругие системы. Закон Гука для перемещений

На вопросах устойчивости равновесия подробнее остановимся в следующем параграфе, а сейчас только подчеркнем, что принцип минимума полной потенциальной энергии охватывает все консервативные системы, как линейные, так и нелинейные. Нелинейности в консервативных системах могут быть геометрические и физические. Геометрические нелинейности обычно связаны с большими перемещениями тонкостенных систем типа стержней, мембран или оболочек. Физические нелинейности проявляются в тех случаях, когда материал не подчиняется закону Гука, а обладает более сложными упругими свойствами.  [c.24]


Допуш,ения о характере деформаций. Пере.че-ш,ения, возникающие в конструкции вследствие упругих деформаций, невелики. Поэтому при составлении уравнений статики исходят из размеров недеформированной конструкции — принцип начальных размеров. Перемещения отдельных точек и сечений элементов конструкции прямо пропорциональны нагрузкам, вызвавшим эти перемещения. Конструкции (системы), обладающие указанным свойством, называют линейно деформируемыми. Необходимым условием линейной деформируемости системы является справедливость закона Гука (линейной зависимости между компонентами напряжений и дефор.маций) для ее материала. В некоторых случаях, несмотря на то, что материал конструкции при деформировании следует закону Гука, зависимость между нагрузками и перемещениями нелинейна (например, при продольно-поперечном изгибе бруса, при контактных деформациях). Линейно деформируемые системы подчиняются принципу независимости действия сил и принципу сложения (принципу суперпозиции). Согласно этим принципам, внутренние силовые факторы, напряжения, деформации и перемещения не зависят от последовательности нагружения и определяются только конечным состоянием нагрузок. Результат действия (перемещение и т. п.) группы сил равен сумме результатов действия каждой из сил в отдельности. При рассмотрении раздельного действия на конструкцию каждой из нагрузок необходимо учитывать соответствующие этой нагрузке опорные реакции. Для бруса в большинстве случаев справедлива гипотеза плоских сечений — сечения бруса, плоские и перпендикулярные к его оси до деформации, остаются плоскими и перпендикулярными к оси и после деформации. Эта гипотеза не справедлива, в частности, при кручении брусьев некруглого поперечного сечения. Для тонких пластин и оболочек принимают гипо-  [c.170]

Предположим, что из тех или иных соображений заданы геометрия стержневой системы и нагрузка на нее. Пусть материал стержней линейно упругий, т. е. подчиняющийся закону Гука, а возникающие в системе перемещения малы. Такие системы называются линейно деформируемыми. Известно, что к расчету таких систем применим принцип независимости действия сил, согласно которому результат воздействия ряда нагрузок различной природы можно рассматривать как сумму результатов воздействия каждой из нагрузок в отдельности.  [c.79]


Применение общих теорем Лагранжа и Кастильяно к системам, для которых связь между внешними силами и перемещениями точек их приложения нелинейна, будь это вследствие того, что рассматриваются пластические деформации, или, как в примере предыдущего параграфа, вследствие того, что уравнения статики должны составляться для деформированного состояния, все равно наталкивается, на значите.1 ьные трудности. В нашем курсе мы ограничимся линейными упругими системами, то есть системами, элементы которых подчиняются закону Гука, сочленения осуществлены без трения и малость деформаций позволяет составлять уравнения статики для недеформированного состояния. При этих условиях, как мы выяснили в 32, перемещения и силы связаны линейными соотношениями. Легко видеть, что это относится в той же мере к изгибу и кручению, так как вёзде в этих задачах мы имеем дело с линейными функциями от сил. Исключение представляет случай продольно-поперечного изгиба там выражение для поперечного изгиба зависит от продольной силы сложным образом, через трансцендентные функции. Легко понять, в чем тут дело. При составлении дифференциального уравнения продольно-поперечного изгиба мы принимаем момент от продольной силы равным произведению силы на прогиб, то есть определяем статический фактор с учетом происшедшей деформации.  [c.336]

При использовании электрических цепей исследуемая область заменяется ступенчатым телом, состоящим из прямоугольных блоков (см. рис. 66). В методе конечных элементов осесимметричное цилиндрическое тело представляется системой кольцевых элементов, чаще всего с треугольным поперечным сечением (рис. 68, а). Считается, что все элементы связаны между собой шарнирно в их узловых точках и в пределах каждого элемента напряжения и температуры постоянны. Поверхностные и объемные силы, действующие на элементы и их стороны, заменяются силами, сосредоточенными в узлах. Под действием сил, приложенных к кольцейому элементу, узловые точки перемещаются (рис. 68, б) перемещения их изменяются линейно от нагрузок, т. е. по закону Гука, как для упругой задачи. Для каждого узла в отличие от электрических цепей составляются два алгебраических уравнения одно для перемещения узла по оси г, а другое— по оси г.  [c.131]


Смотреть страницы где упоминается термин Линейно упругие системы. Закон Гука для перемещений : [c.146]    [c.33]   
Смотреть главы в:

Сопротивление материалов Учебное пособие  -> Линейно упругие системы. Закон Гука для перемещений



ПОИСК



252 — Упругие системы

Гука)

Закон Гука

Закон Гука (см. Гука закон)

Закон упругости

Закон упругости (закон Гука)

Линейная упругость и закон Гука

Линейно-упругий закон или закон Гука

Линейные упругие системы

Линейный закон

Система линейная

Система перемещения

Упругие перемещения

Упругости линейная

Упругость закон Гука



© 2025 Mash-xxl.info Реклама на сайте