Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение свойств термопластичных материалов

ОПРЕДЕЛЕНИЕ СВОЙСТВ ТЕРМОПЛАСТИЧНЫХ МАТЕРИАЛОВ  [c.34]

Сварка газовым теплоносителем без присадочного материала <рис. 286, б) основана на свойстве термопластичных материалов прессоваться в нагретом состоянии при определенном давлении. Перед сваркой кромки листов 1 срезают под углом 20°. Затем листы укладывают под сварку и кромки равномерно нагревают подогретым газом до размягченного состояния. Непосредственно за струей нагретого газа следуют холодные ролики 2 и обжимают листы, чем обеспечивается их сварка. В зависимости от толщины листов скорость сварки составляет 12—20 м/ч. При этом прочность соединения составляет 80—90% прочности основного материала. Бес-  [c.676]


Пластометр (рис. 120) предназначен для определения технологических свойств термореактивных термопластичных материалов при различных температурах, давлениях и градиентах скорости сдвига.  [c.203]

Кроме связующих и наполнителей применяют пластификаторы— Л-чя улучшения технологических и эксплуатационных свойств пластмасс. Пластификаторы также увеличивают холодостойкость пластмасс и устойчивость их к воздействию ультрафиолетового излучения. В некоторых пластмассах содержание пластификатора может достигать 30—40%. На определенных стадиях переработки в пластмассы добавляют сшивающие реагенты , различные инициаторы полимеризации в сочетании с ускорителями и активаторами, красители различных классов и неорганические пигменты. В некоторые пластмассы вводятся стабилизаторы — химические соединения, способствующие длительному сохранению свойств пластмасс и повышению стойкости пластмасс к воздействию теплоты, света, кислорода воздуха. По способности к формованию полимерные материалы подразделяются на две группы термопластичные (термопласты) и термореактивные (реактопласты). При формовании изделий из термопластов химический состав полимеров не изменяется, а в реактопластах происходит изменение их структуры и состава.  [c.216]

В настоящее время в качестве полимерной матрицы для изготовления углепластиков в основном используют термореактивные смолы (или реактопласты). Среди них следует прежде всего назвать эпоксидные смолы, обладающие хорошей адгезией к углеродным волокнам, высокими деформационно-прочностными характеристиками, теплостойкостью и другими ценными свойствами. Часто используют также ненасыщенные полиэфирные смолы, характеризующиеся хорошими технологическими свойствами и атмосферостойкостью (кроме того, они существенно дешевле эпоксидных смол). Для литьевого формования углепластиков начали применять термопластичные полимеры, которые имеют ряд преимуществ перед реактопластами с точки зрения технологии переработки, обладают большей ударной вязкостью и т.д. Определенный прогресс достигнут в разработке материалов на основе термопластичных полимеров и углеродных волокон в виде препрегов, листов для холодной штамповки и других полуфабрикатов.  [c.51]

Это армирующие материалы, пропитанные заранее определенным количеством равномерно распределенной смолы и переработанные таким образом, что сохраняются оптимальные технологические характеристики и обеспечивается воспроизводимость свойств отвержденного композита. Для пропитки применяют эпоксидные, полиэфирные, фенольные, кремнийорганические, полиимидные и термопластичные (например, полисульфон) смолы. Композиции смол используют в виде жидкостей, горячих расплавов и разбавленных растворителем систем, а также как олигомерные смеси.  [c.102]


Детали машин, изготовленные из реактопластов, сохраняют механические свойства, присущие данному материалу, до определенных температур, при которых материал зачастую разрушается. Нагрузки, выдерживаемые материалом, мало зависят от температуры. Иными свойствами обладают термопластичные пластмассы. Они зависят как от структуры, так и от температуры, в которой работает деталь.  [c.64]

Определение значений предела прочности и относительной деформации при разрушении дает некоторое представление о механической прочности и способности деформироваться под нагрузкой (пластических свойствах) материала. Однако эти определения еще не рисуют исчерпывающей картины поведения материала во многих практически важных случаях механической нагрузки. Так, для некоторых материалов (в особенности термопластичных) характерна способность при длительном воздействии сравнительно малых нагрузок давать заметные деформации это — так называемое пластическое или х о -лодное течение материала. Пластическое течение весьма нежелательно, если изделие в эксплуатации должно длительно сохранять неизменными форму и размеры. Для определения склонности материала к пластическому течению образцы материала или готовые изделия из него длительно подвергают воздействию определенных нагрузок и время от времени измеряют деформации. Очень большое значение при этих испытаниях имеет величина температуры и постоянство ее во время опыта при повышении температуры и приближении ее к температуре размягчения данного материала пластическое течение мате-  [c.116]

В аморфных полимерах вязкое смещение (течение) цепей также ограничено поперечными связями в то же время эластомеры и каучуки обладают слабыми поперечными связями, они могут испытывать при комнатной температуре весьма большие обратимые упругие деформации — примерно до 800%. Заметим, что и некоторые другие полимеры могут проявлять свойства эластомеров в определенных температурных интервалах. Чем больше молекулярных цепей сшито (связано в сетки), тем более жестким оказывается материал. Так как поперечные связи и соответствующая сетчатая структура возникают обычно в процессе термического отверждения, можно полагать, что каучуки не являются термопластичными полимерами в строгом смысле этого слова, и их следует рассматривать как третью основную группу материалов.  [c.9]

Обязательной составной частью пластмассы является связующий материал, который придает пластмассе пластичные свойства, т. е. способность принимать определенную форму. В некоторых случаях пластмассы на 100% состоят из связующего материала. В качестве связующего в электроизоляционных пластмассах обычно применяются следующие материалы 1) смолы органические термореактивные и термопластичные (иногда с добавлением каучука) 2) кремнийорганические и фторорганические смолы 3) эфиры целлюлозы.  [c.188]

Коэффициент Пуассона, характеризующий изменение объема при деформировании термопластичных полимеров, как и другие показатели деформационных свойств материалов, зависит от скорости деформирования, величины деформации и температуры. Коэффициент Пуассона термопластичных полимеров I и II групп, определенный в стандартных условиях, находится в интервале 0,3—0,4 (например, для ПММА — 0,35, ПС — 0,305, ПВХ — 0,35, для ПА-6 — 0,4). Коэффициент Пуассона полимеров III группы при 20 °С обычно больше 0,4 и с увеличением содержания аморфной фазы приближается к 0,5.  [c.38]

В отличие от фторопласта свойства литьевых термопластичных материалов (ацетальных смол, полиамидов) зависят от температуры. Вместе с тем при нормальной температуре или незначительном нагреве их износостойкость высока. Поэтому основным критерием наступления предельных режимов эксплуатации термопластичных подшипников скольжения (сокращенно ТПС) является допустимый уровень температур. Следовательно, в основе расчета нагрузочной способности ТПС должен лежать тепловой расчет узла, задачей которого является определение рабочей температуры узла или (при заданной допустимой температуре эксплуатации) допустимых режимов эксплуатации ТПС в данном узле.  [c.34]


В отличие от ПТФЭ антифрикционные и другие свойства литьевых термопластичных материалов (ацетальных смол, полиамидов) зависят от температуры. Вместе с тем при нормальной температуре или незначительном нагреве их износ незаметен. Поэтому основным критерием предельных режимов эксплуатации термопластичных подшипников скольжения (ТПС) является допустимый уровень температур. Следовательно, в основе расчета нагрузочной способности ТПС должен лежать тепловой расчет узла, задачей которого является определение рабочей температуры узла или (при заданной допустимой температуре эксплуатации) допустимых режимов эксплуатации ТПС в данном узле. Ввиду малой теплопроводности и сравнительно высоких значений коэффициента линейного температурного расширения полимеров при эксплуатации ТПС возникают затруднения в отводе теплоты через подшипник и значительно изменяются сборочные зазоры.  [c.69]

Общие сведения. Пластмассами называют материалы на основе высокомолекулярных органических соединений (смол), содержащих наполнители, пластификаторы, модификаторы, ускорители, красители и другие добавки, необходимые для придания определенных свойств изделиям. Эти материалы после переработки в изделия методом прессования и лигья представляют собой твердые упругие тела. В соответствии с типом применяемой смолы пластмассы могут быть термореактивными и термопластичными.  [c.153]

Сварка пластмасс. Основвые технические и технологические свойства пластмасс определяются физико-химическими свойствами связующих веществ (смол), которые в зависимости от их поведения при нагревании разделяются на две основные группы термореактивные полимеры, которые, будучи однажды нагреты до определенной температуры, переходят в неплавкое и нерастворимое состояние термопластичные полимеры, которые при нагревании размягчаются, а при последующем охлаждении возвращаются в исходное состояние. Свариванию, таким образом, можно подвергать только детали, изготовленные из термопластичных материалов.  [c.148]

Термопластичные полимеры в стеклообразном состоянии характеризуются низкой сопротивляемостью прорастанию трещин при ударном нагружении. Этот существенный недостаток можно устранить пластифицированием низкомолекулярными веществами или смешением с полимерами повышенной упругости. Однако в обоих случаях повышение ударопрочности сопровождается снижением жесткости, предела пропорциональности и теплостойкости материала. Удачной попыткой избежать этих осложнений явилось создание эласхифицированных и наполненных термопластов. В первом случае повышенная ударопрочность достигается диспергированием эластомера в непрерывной матрице из термопласта, во втором — наполнением волокнами различного типа. Эффект эластифицирования обеспечивается лишь в том случае, когда на границе контакта термопласт — эластомер создан переходный слой определенной толщины, обеспечивающий устойчивость текстуры композиционного материала и прорастание трещин в частицы эластомера. Хотя пока удалось создать небольшое число эластифицированных термопластов, значение этих материалов и перспективность такого направления в полимерном материаловедении исключительно велики. Анализу свойств этих материалов и их взаимосвязи с составом посвящена IV глава.  [c.5]

Определение предела прочности и относительной деформации при разрушении дает некоторое представление о механической прочности материала и его способности деформироваться под нагрузкой (о пластических свойствах материала). Однако эти испытания еще не дают исчерпьгеающих сведений о поведении материала под действием механической нагрузки. Так, некоторые материалы (в особенности термопластичные) способны деформироваться при длительном воздействии. Это так называемое пластическое, или холодное, течение материала. Пластическое течение весьма нежелательно, если изделие в эксплуатации должно длительно сохранять неизменными форму и размеры. При повышении температуры и приближении ее к температуре размягчения данного чатероала пластическое течение материала сильно увеличивается  [c.78]

Литье под давлением — наиболее распространенный процесс переработки в детали не только термопластичных полимеров, но и термореактивных материалов. Как и в любом случае проектирования рмующего инструмента, выполнение определенных правил — лишь необходимое, но недостаточное условие обеспечения высокого качества деталей значительную роль приобретает глубокое знание процессов, происходящих в литьевой форме, полный учет свойств пластмасс, проявляемых при переработке сырья и эксплуатации детали. Каждая деталь требует по существу принятия индивидуальных решений при проектировании форм, и в этом заключается искусство конструктора.  [c.316]

Резко выраженная зависимость характера деформирования и раз-рзтаения термопластичных полимеров от условий нагружения приводит к тому, что показатели их деформационных свойств и прочности, определенные в строго заданных условиях, не могут быть использованы для прогнозирования поведения материала в других условиях нагружения. Однако показатели, определенные в стандартных условиях, такие как кратковременный модуль упругости, твердость, теплостойкость, предел текучести, разрушающее напряжение, деформация при разрушении, характеризующие прочность при низких скоростях нагружения, а также ударная вязкость и температура хрупкости, характеризующие прочность при высокоскоростных нагрузках, важны для сравнительной оценки различных материалов.  [c.35]

Мономеры при реакции поликонденсации должны содержать не менее двух функциональн1 1х групп (группы —ОН —СООН —Нг и др.). При реакциях полимеризации и поликонденсации обычно получают полимеры линейного строения. Часть таких полимеров при определенной повышенной температуре переходит из твердого состояния в пластичное, а затем при охлаждении снова в твердое. Это их свойство наряду с использованием пластических деформаций создает возможность перерабатывать такие материалы в изделия различной формы и конфигурации. Полимеры, которые при нагревании до определенной температуры размягчаются, носят название термопластичных. К термопластичным полимерам относятся неполярные полимерные соединения, например полимерные углеводороды (полиэтилен, полипропилен и т. д.), или симметрично построенные полярные полимеры, у которых суммарный ди-польный момент равен О, например политетрафторэтилен (фторопласт)  [c.133]



Смотреть страницы где упоминается термин Определение свойств термопластичных материалов : [c.37]    [c.192]    [c.457]    [c.104]    [c.192]   
Смотреть главы в:

Полимеры в узлах трения машин и приборов  -> Определение свойств термопластичных материалов



ПОИСК



Определение свойств материала

Свойства материалов

Термопластичность

Термопластичные материалы



© 2025 Mash-xxl.info Реклама на сайте