Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Атмосферы со степенями агрессивности 1, 2 и 3 — ТТП

Для отдельных степеней коррозионной агрессивности атмосфер действительны данные табл. 3. В ней приведены возможные скорости коррозии в среде с данной степенью агрессивности.  [c.23]

Атмосферы СО степенями агрессивности 1, 2 и 3 — ТТП 1  [c.118]

Атмосферы со степенями агрессивности 4, 5 — ТТП 3  [c.121]

Основное назначение консервации — предохранить изделие от коррозионного воздействия атмосферы. Скорость коррозии в значительной мере определяется составом атмосферы и климатом. Различают четыре вида атмосфер сельскую, промышленную, морскую и тропическую. Последняя признана наиболее агрессивной в коррозионном отношении. Из наиболее агрессивных компонентов в составах перечисленных атмосфер могут быть сернистый газ, сероводород, аммиак, индустриальная пыль, различные соли, в особенности хлористый натрий. В сочетании с атмосферной влагой эти компоненты п обусловливают различную степень агрессивности атмосферы в определенных местностях.  [c.95]


Таблица 15. Степень агрессивного воздействия содержащихся в атмосфере газов на части металлических конструкции Таблица 15. Степень <a href="/info/275167">агрессивного воздействия</a> содержащихся в <a href="/info/473523">атмосфере газов</a> на части металлических конструкции
Таблица 16. Степень агрессивного воздействия содержащихся в атмосфере солей, аэрозолей и пыли на части стальных и алюминиевых конструкций Таблица 16. Степень <a href="/info/275167">агрессивного воздействия</a> содержащихся в атмосфере солей, аэрозолей и пыли на части стальных и алюминиевых конструкций
Степень агрессивного воздействия содержащихся в атмосфере газов на части металлических конструкций приведена в табл. 15 солей, аэрозолей и пыли — в табл. 16 жидких неорганических и органических средах — в табл. 17.  [c.57]

По этой классификации по степени агрессивности все атмосферы с учетом содержания в воздухе агрессивных компонентов и характера макроклимата делятся на четыре группы Л — легкие, С — средние, Ж — жесткие, ОЖ — очень жесткие.  [c.145]

Учитывая различную степень агрессивности промышленных атмосфер, рекомендуется во избежание непроизводительного расхода металла назначать толщину элементов с учетом скоростей коррозии.  [c.425]

Прежде чем выбрать материал для конструкции и назначить его толщину, конструктор должен располагать сведениями о степени агрессивности той или иной атмосферы или жидкой среды. Если агрессивные свойства известных электролитов изучены достаточно полно и о них существует много справочных материалов [11—40], то агрессивные свойства атмосфер в различных отраслях промышленности изучены слабо.  [c.427]

ТАБЛИЦА 69. КЛАССИФИКАЦИЯ ЗДАНИЙ МЕТАЛЛУРГИЧЕСКИХ ЗАВОДОВ ПО СТЕПЕНИ АГРЕССИВНОСТИ АТМОСФЕР  [c.429]

Важными факторами, определяющими конструктивные особенности уплотнения, являются диаметр и частота вращения вала, его биение и возможные смещения, допускаемые габариты уплотнения, условия его сборки и разборки при необходимости замены. Выбор конструкции торцового уплотнения в значительной степени определяется физикохимическими свойствами среды, для которой предназначено уплотнение ее агрегатным состоянием (газ, жидкость), давлением, температурой, вязкостью, содержанием взвешенных твердых частиц и солей, химич кой агрессивностью, воспламеняемостью (при нагреве, в контакте с атмосферой), степенью опасности воздействия на людей и окружающую среду. По условиям работы можно выделить четыре группы торцовых уплотнений  [c.246]


Как видно из таблиц, наиболее агрессивными для изучаемых сплавов является Северная приморская атмосфера Баренцева моря и индустриальная атмосфера металлообрабатывающего завода. Далее, но степени агрессивности следует индустриальная атмосфера Московской станции, затем Южная приморская атмо-сфера г. Батуми. Наименее агрессивной является сельская атмосфера Звенигородской коррозионной станции. Как показывает анализ результатов длительных атмосферных испытаний алюминиевых сплавов [7—9], скорость коррозии значительно уменьшается с увеличением времени экспозиции образцов. Причем в приморской и промышленной атмосферах скорость коррозии, определяемая по глубине ее проникновения, резко замедляется уже после 1,5—2 лет экспозиции.  [c.156]

Задачей проектировщика является прежде всего назначить конструктивные мероприятия, которые обеспечили бы наибольшую коррозийную стойкость конструкции в данной агрессивной среде. Поэтому он должен располагать полными сведениями об особенностях агрессивной среды данного производства. В первую очередь следует позаботиться о снижении степени агрессивности среды путем своевременного вмешательства в проектирование технологического оборудования и процессов. Необходимо добиваться возможного уменьшения вредных выделений газов, паров и аэрозолей в атмосферу цеха, а также попадания технологических растворов на конструкции. С этой целью должна быть обеспечена возможно более полная герметизация оборудования, аппаратуры и коммуникаций, эффективная система местного отсоса и общей приточно-вытяжной вентиляции.  [c.108]

Наибольшее разрушение атмосферостойкие покрытия претерпевают при воздействии атмосферы, содержащей агрессивные газы и пары. Повышенная влажность воздуха и температура усиливают влияние агрессивных сред на разрушение полимерных покрытий. Агрессивные газы в зависимости от их содержания в воздухе,условно можно разделить натри группы А, Б и В, причем степень агрессивного воздействия возрастает от А к В. Так, например, концентрация сернистого ангидрида в атмосфере в группе А составляет менее 0,02, в группе Б — от 0,02 до 0,1, а в группе В — от 0,1 до 0,5 мг/л оксидов азота — в группах А, Б и В содержится соответственно 0,005 0,005— 0,025 и от 0,025 до 0,125 мг/л.  [c.258]

Условия эксплуатации защищаемых объектов являются определяющим фактором при выборе способа защиты. В разделе Условия эксплуатации приводятся описание типа производства с перечислением сырья, химических соединений, используемых в технологическом процессе, промежуточных и конечных продуктов, отходов производства с указанием их агрегатного состояния, концентрации, значений pH, температуры, давления и характера воздействия на технологическое оборудование состав и характеристики жидких, газообразных и твердых сред, воздействующих на строительные конструкции в производственных помещениях (концентрация агрессивных веществ в атмосфере цеха, гигроскопичность, частота воздействия, относительная влажность воздуха, механические нагрузки и т. д.) состав стоков от отдельных сооружений (концентрация агрессивных веществ), степень агрессивности и температура характеристика атмосферных осадков в районе расположения защищаемого объекта, перечень агрессивных примесей, их концентрация в наружном воздухе, перепады температуры и длительность стояния ее предельных значений данные о составе и уровне грунтовых вод и степень их агрессивности по отношению к металлу и бетону.  [c.148]

При защите от коррозии строительных конструкций зданий и сооружений, подверженных воздействию агрессивных сред, в первую очередь осуществляют мероприятия, предусмотренные проектом, по снижению степени агрессивного действия среды путем герметизации технологического оборудования, трубопроводов, вентиляционных воздуховодов устройства местных вентиляционных отсосов для уменьшения загрязнения атмосферы цеха и снижения в ней концентрации агрессивных газов обеспечения нормального температурно-влажностного режима.  [c.20]


Атмосфера со степенью агрессивности  [c.479]

Степень агрессивного воздействия атмосферы  [c.122]

Рассмотрены агрессивные среды, действующие на здания и сооружения химических предприятий. Даиы основные сведения о коррозионных процессах в условиях жидких, твердых и газообразных сред. Обобщен опыт проектирования и приведены наиболее распространенные методы первичной и вторичной защиты конструкций из металла, бетона, железобетона. Показано влияние загрязненной атмосферы, грунтов и грунтовых вод на повышение степени агрессивного воздействия.  [c.2]

С каждым годом наблюдается довольно устойчивая тенденция к повышению степени агрессивного воздействия жидких, твердых и газовых сред, окружающих строительные конструкции. Можно отметить некоторые причины, объясняющие такое положение интенсификация технологических процессов (повышение температуры, давления, концентраций) значительное увеличение единичных мощностей производств, укрупнение агрегатов переход от закрытых отапливаемых зданий к открытым этажеркам установка и эксплуатация технологического оборудования в условиях открытой атмосферы увеличение коэффициента застройки генеральных планов химических предприятий и повышение вероятности утечек агрессивных сред на единицу площади широкое применение в строительстве конструкций, обладающих меньшей коррозионной устойчивостью по сравнению с применяемыми ранее (панельные стены, предварительно напряженный железобетон, тонкостенные профили, высокопрочная арматурная сталь и т. д.) возросший фонд эксплуатируемых зданий и сооружений, запасы прочности строительных конструкций в которых уменьшаются в результате действия коррозионных сред сокращение применения для оборудования и сооружений легированных сталей и использование вместо них углеродистых с защитными покрытиями недостаточный контроль за эксплуатацией действующих конструкций.  [c.3]

К числу факторов, влияющих на скорость коррозии в атмосфере, не меньшую роль, чем степень влажности воздуха, играет состав пленки, сконденсированной на металлической поверхности. Состав пленки и степень ее агрессивности зависят от степени загрязненности воздуха и характера этих загрязнений. В зависимости от этих условий, скорость атмосферной коррозии одного II того же металла или сплава может изменяться в десятки и сотни раз.  [c.177]

В закрытых и полузакрытых помещениях защитные свойства атмосферостойкой стали как минимум в 2 раза меньше, чем на открытом воздухе в том же месте. В атмосфере со степенью коррозионной агрессивности 4 преимущества этой стали перед обычными углеродистыми сталями не очевидны [12].  [c.31]

Химическое оксидирование стали и алюминия позволяет получать сплошные слои с малой пористостью и хорошей адгезией, которые имеют защитные свойства в атмосфере с низкой степенью коррозионной агрессивности. Сталь подвергают, например, так называемому воронению, которое в сочетании с консервирующими средствами обеспечивает удовлетворительную защиту стальных изделий от сухой атмосферной коррозии. Окисные слои на алюминии, полученные химическим оксидированием, существенно повышают стойкость не только самого алюминия, но и лакокрасочных систем, нанесенных на окисный слой.  [c.74]

Цинк и кадмий часто хроматируют в растворах хромовой кислоты или хроматов. Хроматированный цинк в атмосфере с низкой степенью коррозионной агрессивности противостоит в течение определенного времени образованию белых продуктов коррозии, так называемой белой ржавчины.  [c.74]

В табл. 8 приведена спецификация коррозионной агрессивности атмосферы применительно к лакокрасочным покрытиям на примерах сред с различной степенью коррозионной агрессивности макроклиматических областей в умеренном климате (ЧСН 03 8203, 03 8240 и 03 8270).  [c.108]

Степень коррозионной агрессивности атмосферы  [c.109]

Скорость равномерной коррозии цинка за год для отдельных степеней коррозионной агрессивности атмосфер согласно 12.3.1 приведена в табл. 15.  [c.125]

Концентрация примесей в атмосфере постоянно меняется по сезонным циклам [23] в зависимости от географического расположения, движения воздушных масс, температуры воздуха и атмосферных осадков. Необходимо отметить, что она не является решающим показателем. Агрессивность примесей определяется их природой и степенью растворимости во влажной пленке, а также характером взаимодействия с металлом и т. п.  [c.7]

Сельским станциям присущи очень низкие концентрации в атмосфере промышленных газов — менее 10 г/мз и выпадающих минеральных солей — менее 10- г/(м2-сут). Городские станции характеризуются повышенным содержанием в воздухе (до 5 10 г/м ) промышленный газов, чаще всего SO2, пыли и других компонентов. В районах с высокоразвитой промышленностью (металлургической и химической) размещаются индустриальные станции. В этих районах степень загрязнения воздуха агрессивными примесями достигает не менее 10 г/м . Морские станции (помимо испытательных стендов на морских судах) располагаются на расстоянии десятков или сотен метров от моря. Поверхностная концентрация морских солей, оседающих на металлах, иногда превосходит сотни миллиграммов в сутки на 1 м .  [c.71]

Во всех случаях обнаруживается преимущество алюминиевых покрытий перед цинковыми. Алюмидаевые покрытия при длительном сроке службы конструкций приносит значительную экономию защищаемого металла по сравнению с лакокрасочными покрытиями. Алюминиевое покрытие толщиной- 200—300 мкм можно применять без лакокрасочных покрытий для атмосфер с высокой степенью агрессивности.  [c.62]

ТТП9 распространяется на защитные и цинковые покрытия, наносимые газопламенным напылением, металлизацией, распылением на изделия из стали и чугуна. Покрытия предназначены для защиты от коррозии в атмосферах со степенями коррозионной агрессивности 4 и 5 и в водах всех видов. Согласно стандарту ЧСП03 8551 выделены три степени агрессивности воды (табл. 16).  [c.126]


Для окраски металлических поверхностей, подвергающихся действиям горячих растворов 40 % шелочи, слабых растворов азотной, серной, соляной кислот, а также в условиях атмосферы, содержащей газы и пары слабой и средней степени агрессивности атмосферы без воздействия солнечной радиации и осадков (под навесом), а также в условиях тропического климата. Наносится по грунтам ЭП-0010, ЭП-0020, ЭП-057 Стойка в условиях атмосферы, содержащей газы и пары слабой степени агрессивности, а также в слабых растворах кислот, щелочей и воды. Стойка к действию бензина, масла. Наносится по акриловым АК-070, эпоксидно-полиамидным ЭП-076 грунтовкам, по ЭП-0010, ЭП-09Т (красная), ЭП-057  [c.114]

Если в проектируемых цехах предусмотрены мероприятия, уменьшающие степень агрессивности атмосфер, а также лучшие средства противокоррозионной защиты (улавливание коррозионно-активных газов и паров, усиление аэрации зданий, герметизация технологического оборудования, применение более стойких лакокрасочных покрытий), допускается в расчетные формулы подставлять не фактически наблюдаемые скорости коррозии, а уменьшенные в 1,5—2 раза. Практика проектирования, согласно работе [44], показывает, что по предложенным форму- лам можно подобрать сечения элементов для атмосфер, скорость коррозии в которых не превышает 0,15 MMjzod. В случае более агрессивных атмосфер, когда невозможно полностью использовать подобранное сече-Бие до предельно несущей способности, рекомендуется применять более коррозионностойкие стали (медистые, содержащие 0,2% Си и низколегированные стали), а также более мощные сечения и элементы.  [c.427]

Кроме того, степень агрессивности атмосферы существенно ависит от относительной влажности и температуры воздуха, скорости воздухообмена и пр. При низкой относительной влажности газы почти не действуют на сухой бетон.  [c.14]

При рассмотрении технологических заданий на разработку антикоррозионной защиты проектировщики уделяют основное внимание выявлению различных агрессивных газов в атмосфере помещений. Между тем, как показывает опыт эксплуатации действующих предприятий, главным показателем,-определяющим степень агрессивности среды, является влажностное состояние материала конструкций. В сухой атмосфере ни один из агрессивных газов не вызывает коррозии строительных материалов. Даже емкости для хлора (одного из наиболее агрессивных газов) выполняют из углеродистой стали без дополнительной защиты. Влажность неметаллических материалов и образование пленочной влаги на металлоконст-  [c.9]

О до 5°С. Если для металла продолжительностью пребывания фазовой влаги на поверхности является основным пардметром, характеризующим атмосферную коррозию, то для неметаллических капиллярно-пористых тел (бетона, асбестоцемента, кирпича и т. д.) коррозионные процессы протекают весьма медленно (в том случае, если в атмосфере отсутствуют сильноагрессивные газы). Снижение долговечности происходит интенсивнее, когда увлажненный материал испытывает многократные циклы замораживания и оттаивания. Степень агрессивного воздействия указанных физических факторов определяется количеством циклов перехода температуры через 0°С, а также суровостью климата (рис. 5).  [c.18]

Зона аэрации — самая верхняя и непосредственно сообщается с атмосферой. Через эту зону фильтруют атмосферные осадки, в том числе содержащие агрессивные компоненты, а также происходит испарение грунтовых вод. Вода в зоне аэрации содержится в виде пара и при изменении температуры и давления способна образовывать конденсат. При просачивании осадков или технологических вод в зону аэрации образуется так называемая подвещенная капиллярная вода. В этой же зоне скапливаются грунтовые воды типа верховодки , одной из причин появления которой является различная скорость фильтрации грунтов, лежащих в основании сооружений. Скорость фильтрации воды в грунтах является важным показателем при оценке степени агрессивности водной среды. Она составляет для гравия 70—200, песка 1,5— 4,5, глины 0,001—0,005 м/сут.  [c.93]

Следует помнить, что во всех атмосферах, за исключением особо агрессивных, средняя скорость коррозии металлов в общем ниже, чем в природных водах или почвах. Это видно из табл. 8.3, где скорость коррозии стали, цинка и меди в трех различных атмосферах сравнивается со средней скоростью коррозии в морской воде и различных почвах. Кроме того, атмосферная коррозия равномерна, пассивирующиеся металлы (например, алюминий или нержавеющие стали) в этих условиях в меньшей степени подвержены питтингу, чем в воде или в почвах.  [c.174]

Срок службы антикоррозионной бумаги УНИ зависит от ряда факторов, наиболее важными из которых являются тщательность подготовки поверхности металлоизделия к консервации, соответствие упаковочного материала нормативно-технической документации (количество ингибитора в бумаге, физико-механические показатели материала, его влагопрочностьи паропроницаемость), наличие барьерного покрытия и его вид, а также условия последующего хранения и транспортировки. В табл. 27 представлейк средние значения сроков хранения упакованных в антикоррозионную бумагу УНИ металлоизделий в зависимости от вида барьерного покрытия и степени коррозионной агрессивности атмосферы согласно СТ СЭВ Коррозия металлов. Классификация коррозионной агрессивности атмосферы (легкие сроки хранения — Л, средние — С, жесткие — Ж, очень жесткие — ОЖ), применительно к стали и чугуну, стали с неметаллическим неорганическим покрытием, а также стали и чугуну с металлическим покрытием (никелевым, хромовым — без подслоя меди).  [c.108]

ТТП1 распространяется на атмосферы со степенью коррозионной агрессивности 1—3 (см. подраздел 12.3), характерные для конструкций складских помещений неагрессивных веществ, машиностроительных производственных цехов, крановых путей, дорожных мостов, мачт линий электропередач, строительных кранов и конструкций, подверженных воздействию городской и промышленной атмосферы.  [c.118]

Испытаниям подвергали стеклопластики горячего отверждения на основе связующего ЭДТЮП, пенопласт ПС1, а также прессматериалы СТЭР-1-30 и др. По условиям воздействия агрессивной среды на полимерные материалы установлено, что наиболее тяжелыми являются условия периодического смачивания, в меньшей степени — условия выдержки в атмосфере и в еще меньшей степени — условия в патерне.  [c.98]


Смотреть страницы где упоминается термин Атмосферы со степенями агрессивности 1, 2 и 3 — ТТП : [c.31]    [c.61]    [c.51]    [c.180]    [c.108]    [c.108]    [c.83]   
Смотреть главы в:

Противокоррозионная защита металлических конструкций  -> Атмосферы со степенями агрессивности 1, 2 и 3 — ТТП



ПОИСК



Атмосфера

Атмосфера агрессивность

С агрессивная



© 2025 Mash-xxl.info Реклама на сайте