Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гидравлический расчет истечения жидкостей

Глава 7. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ИСТЕЧЕНИЯ ЖИДКОСТЕЙ  [c.301]

В ней приведен материал по гидростатике, гидродинамике, гидравлическим сопротивлениям, истечению жидкости из отверстий, движению жидкости в напорных трубопроводах, безнапорному движению жидкости и движению жидкости в пористой среде. Рассмотрены типовые примеры гидравлических расчетов из различных областей нефтяной техники.  [c.2]


Задачи по гидростатике, уравнению Д. Бернулли, истечению жидкости, равномерному движению являются общими для этих специальностей. Вместе с тем в сборнике имеются задачи, характерные только для отдельных специальностей дорожно-строительных — расчеты отверстий малых мостов и дорожных труб строительных — расчеты водопроводных и канализационных труб гидротехнических — гидравлические расчеты водосливных плотин и истечения из-под щита.  [c.3]

Рассматриваются основные законы покоя и движения жидкости, гидравлические сопротивления, а также движение жидкости по трубам и истечение из отверстий. Излагаемый материал иллюстрируется примерами из практики. Приведен гидравлический расчет трубопроводов в соответствии с последними нормами. Даны основы моделирования гидроаэродинамических явлений.  [c.2]

Ширина сопла питания % и высота элемента/ . Проведенные исследования показали [9], что гидравлический струйный элемент четко переключается в диапазоне чисел Рейнольдса 800—8410. Расход и давление потока управления при повышении температуры масла от 30 до 75 °С изменялись в пределах 8—12%. Для расчета площади проходного сечения сопла питания, по данным исследований гидравлических струйных элементов, можно рекомендовать скорость истечения жидкости принимать в пределах 30—64 м/с.  [c.291]

Максимальной удельной кинетической энергией обладает струя жидкости, вытекающая из коноидального насадка. Большую кинетическую энергию имеют также струя, вытекающая из круглого отверстия в тонкой стенке, и струя, протекающая через конический сходящийся насадок. Несмотря на то что пропускная способность внешнего насадка значительно выше пропускной способности отверстия в тонкой стенке, кинетическая энергия струи жидкости, вытекающей через отверстие в тонкой стенке, несколько больше, чем у струи цилиндрического внешнего насадка. Насадки конические расходящиеся отличаются мини мальными значениями скорости и удельной кинетической энергии. Гидравлические сопротивления достигают наибольшей величины при истечении жидкости через конический расходящийся насадок, а наименьшей — через коноидальный. Рассмотренные гидравлические характеристики малых отверстий в тонкой стенке и насадков различных типов помогают ориентироваться при их выборе для практического применения при расчете и конструировании отдельных сооружений или устройств.  [c.160]


Задача об истечении жидкости через отверстие является одной из основных задач гидравлики и встречается довольно часто в практических расчетах различных гидравлических устройств. Эта задача сводится к определению скорости истечения и расхода вытекающей из отверстия жидкости. При этом расчетные зависимости обычно относятся к малому отверстию в тонкой стенке.  [c.46]

При обратном ходе в зависимости от требований технологического процесса воздух из подпоршневого пространства пневматического механизма 6 можно выпускать или быстро через специальный воздухопровод перед дросселем, или медленно через дроссель. В рассматриваемой схеме золотник приводится в движение от кулачкового механизма с пружиной 2. Кулак расположен на главном валу машины. Как видно из рассмотренной схемы, при выполнении технологического процесса с помощью пневматического механизма создается давление на жидкость, представляющую собой расплавленный металл, а затем происходит перемещение ее, сопровождаемое такими же явлениями, как и в гидравлических механизмах. Целью расчета является определение времени заполнения формы, что, в свою очередь, зависит от закона истечения струи расплавленного металла или, в конечном счете, от закона движения поршня. Таким образом, при решении поставленной задачи приемлемы уравнения, рассмотренные в предыдущих параграфах.  [c.234]

В разд. 1 справочника даны фундаментальные определения, краткое изложение понятий и законов механики жидкости и газа, механики двухфазных систем, а также методы применения их в инженерных расчетах. Специалисты теплоэнергетики и теплотехники найдут здесь тщательно отобранные сведения по методам расчета гидравлических сопротивлений элементов различных конструкций, расходов при истечении из отверстий и насадок, газодинамических процессов и т. д.  [c.7]

Первые шесть глав книги (введение, гидростатика, основы гидродинамики, гидравлические сопротивления, истечение жидкости через отверстия и насадки, движение жидкости в напорных трубопроводах) и тринадцатая глава составлены проф. А. А. Угинчусом. Последующие шесть глав (равномерное движение жидкости в открытых руслах, теория установившегося неравномерного движения жидкости в открытых руслах, водосливы и гидравлика дорожных труб и малых мостов, сопряжение бьефов и гидравлический расчет косогорных сооружений, теория моделирования и движение грунтовых вод) написаны доц. Е. А. Чугаевой.  [c.3]

Определение основных размеров маслопроводов, систем водяного охлаждения, разного рода сопловых аппаратов и насадков, а также расчет водоструйных насосов, карбюраторов и т. д. производятся с использованием основных законов и методов гидравлики уравнения Бернулли, уравнения равномерного движения жидкости, зависимости для учета местных сопротивлений и формул, служащих для расчета истечения жидкостей из отверстий и насадков. Приведенный здесь далеко не полный перечень практических задач, с которыми приходится сталкиваться инже-нерам-механикам различных специальностей, свидетельствует а большой роли гидравлики в машиностроительной промышленности и ее тесной связи со многими дисциплинами механического цикла (насосы и гидравлические турбины, гидравлические прессы и аккумуляторы, гидропривод в станкостроении, приборы для измерения давлений, автомобили и тракторы, тормозное дело, гидравлическая смазка, расчет некоторых элементов самолетов и гидросамолетов, расчет некоторых элементов двигателей и т. д.).  [c.4]

Расчет гидравлического сопротивления аппаратов цилиндрической формы [45]. Удельные потери, т. е. потери давления на единицу толщины слоевого (пористого) цилиндра при данном расходе жидкости меняются с толщиной стенок цилиндра. При истечении жидкости наружу скорость в направлении истечения надает вместе с увеличением поверхности (диаметра) цилиндрического слоя, а следовательно, удельные потери у.мень-шаются. При всасывании имеет место обратное явление. Если использовать известные формулы для коэффициентов сопротивления плоских слоев, то это обстоятельство должно быть учтено. Сделаем соответствующие пересчеты.  [c.306]


Блестящих результатов в самых различных отделах механики достиг гениальный ученый Николай Егорович Жуковский (1847—1921), основоположник авиационных наук экспериментальной аэродинамики, динамики самолета (устойчивость и управляемость), расчета самолета на прочность и т. д. Его работы обогатили теоретическую механику и очень многие разделы техники. Движение маятника теория волчка экспериментальное определение моментов инерции вычисление пла нетных орбит, теория кометных хвостов теория подпочвенных вод теория дифференциальных уравнений истечение жидкостей сколь жение ремня на шкивах качание морских судов на волнах океана движение полюсов Земли упругая ось турбины Лаваля ветряные мельницы механизм плоских рассевов, применяемых в мукомольном деле движение твердого тела, имеющего полости, наполненные жидкостью гидравлический таран трение между шипом и подшипником прочность велосипедного колеса колебания паровоза на рессорах строительная механика динамика автомобиля — все интересовало профессора Жуковского и находило блестящее разрешение в его работах. Колоссальная научная эрудиция, совершенство и виртуозность во владении математическими методами, умение пренебречь несущественным и выделить главное, исключительная быстрота в ре-щении конкретных задач и необычайная отзывчивость к людям, к их интересам — все это сделало Николая Егоровича тем центром, вокруг которого в течение 50 лет группировались русские инженеры. Разрешая различные теоретические вопросы механики, Жуковский являлся в то же время непревзойденным в деле применения теоретической механики к решению самых различных инженерных проблем.  [c.16]

Период XVII века и начало XVIII века. В это время механика жидкости все еще находилась в зачаточном состоянии. Вместе с тем здесь можно отметить имена следующих ученых, способствовавших ее развитию Кастелли (1577-1644)-преподаватель математики в Пизе и Риме — в ясной форме изложивший принцип неразрывности Торричелли(1608 — 1647) — выдающийся математик и физик — дал формулу расчета скорости истечения жидкости из отверстия и изобрел ртутный барометр Паскаль (1623 —1662) — выдающийся французский математик и физик — установивший, что значение гидростатического давления не зависит от ориентировки площадки действия, кроме того, он окончательно решил и обосновал вопрос о вакууме Ньютон (1643 н. ст. —1727) - гениальный английский физик, механик, астроном и математик — давший наряду с решением ряда гидравлических вопросов приближенное описание законов внутреннего трения жидкости.  [c.27]

В различных энергетических и промышленных уетройствах применяется барботаж газа через слой жидкости. В частности, таким образом осуществляется промывка пара в современных котлах сверхвысокого давления. Простейший барботер представляет собой дырчатый лист, через который в слой жидкости подается газ (пар). Жидкость в целом или не перемещается, или течет вдоль дырчатого листа. Гидравлический расчет такой системы еводится в основном к определению условий устойчивого истечения пара через дырчатый лист и высоты барботируемого слоя жидкости при заданном расходе газа.  [c.211]

На рис. 7.10.7 приведены результаты расчетов, иллюстрирующих возможность уменьшения ( запирания ) расхода газа путем подачи жидкости на входе в канал. Такое запирание может использоваться при аварийном истечении газа. Видно, что подача жидкости сначала приводит к быстрому уменьшению критического расхода а затем с ростом подаваемого расхода жидкости это уменьшение замедляется. Для полного запирания газового потока жидкостью необходимо обеспечивать ее расход П , превышающий значение расхода т,1 , при котором гидравлическое сопротивление равно заданному перепаду давления ро — Рсо при однофазном течении жидкой фазы. Однако даже такой расход жидкости может оказаться недостаточным для полного запирания газа. Это связано с возможностью реализащи при малых газосодержаниях обращенной дисперсно-кольцевой структуры турбулентного газожидкостного потока с газовой пленкой на стенке трубы, приводящей к уменьшению потерь давления на трение. Тогда при малых газосодержаниях зависимость (те ) может стать неоднозначной (см. рпс. 7.10.7).  [c.293]


Смотреть страницы где упоминается термин Гидравлический расчет истечения жидкостей : [c.284]    [c.11]   
Смотреть главы в:

Гидравлика и аэродинамика  -> Гидравлический расчет истечения жидкостей



ПОИСК



Гидравлический Гидравлический расчет

Гидравлический расчет

Истечение

Истечение жидкостей



© 2025 Mash-xxl.info Реклама на сайте