Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметры состояния воды и водяного пара

Параметры состояния воды и водяного пара  [c.112]

Определение параметров состояния воды и водяного пара  [c.72]

Для систем теплоснабжения, отопления, вентиляции и кондиционирования воздуха представляют интерес различные области состояний воды и водяного пара. Относительно низкие параметры характерны для отопления, вентиляции и кондиционирования воздуха вода и насыщенный пар используются здесь как теплоносители в отопительных системах вода имеет температуру 65— 150 °С, насыщенный пар имеет давление 0,1—0,3 МПа. Основной рабочей средой в системах вентиляции и кондиционирования воздуха является влажный воздух, в состав которого входит перегретый или насыщенный водяной пар с температурой менее 100°С. Что касается теплоснабжения и котельных установок, то здесь параметры выще в котлах для централизованного теплоснабжения вырабатывается насыщенный пар с давлением до 4 М.Па, перегретый пар может достигать температуры 250 или 440 °С. Параметры пара перед паровыми турбинами ТЭЦ могут достигнуть 13 МПа и 565 °С и даже быть закритическими 24 МПа и 565 °С (оба параметра выше критических значений). Широко используются насыщенный пар с давлением около 1,4 МПа и вода с температурой 150—180 °С (иод соответствующим давлением для предотвращения вскипания).  [c.121]


Уравнения состояния воды и водяного пара. Ограничения памяти ЭВМ вызывают значительные трудности при использовании обширных табличных данных для определения параметров водяного пара и воды. Один из упрощающих приемов заключается в замене полных таблиц сокращенными, состоящими из узловых точек. Промежуточные значения параметров по этим узловым точкам определяются методами линейной или квадратичной интерполяции.  [c.175]

Определение параметров характерных состояний воды и водяного пара и связь между ними  [c.169]

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ХАРАКТЕРНЫХ СОСТОЯНИЙ ВОДЫ И ВОДЯНОГО ПАРА И СВЯЗЬ МЕЖДУ НИМИ  [c.211]

С повышением давления разность v"—v уменьшается, линии II и III сближаются и при некотором давлении они пересекаются в точке К, которая называется критической. Таким образом, точка К определяет критическое состояние воды и водяного пара и все параметры в этом состоянии называются критическими. Критическое состояние любого вещества характеризуется тем, что различие между жидкостью и паром исчезает. Критические параметры для воды имеют следующие значения ркр=221,15 бар, /кр=374,12°С и Dkp= =0,003147 м /кг. Критическое состояние впервые было установлено Д. И. Менделеевым в 1861 г.  [c.106]

При практических расчетах все параметры кипящей воды и водяного пара различных состояний определяются с помощью специальных таблиц или диаграмм.  [c.48]

За нулевое состояние, от которого отсчитываются величины s, s", принято состояние воды в тройной точке. Так как состояние кипящей воды и сухого насыщенного пара определяется только одним параметром, то по известному давлению или температуре из таблиц воды и водяного пара берутся значения у, и", /г, h s, s", г  [c.37]

Для иллюстрации и сравнения результатов, полученных по двум моделям, на рис. АЛ..АЛ приведены некоторые характеристики двухфазного испаряющегося потока в пористых матрицах в зависимости от его расходного массового паросодержания х. Расчеты выполнены с использованием физических свойств воды и водяного пара в состоянии насыщения при давлении 0,1 МПа. Интеграл 1(х) на рис. 4.4, б рассчитан в соответствии с формулой (4.19) по значениям параметра Ф (л ), приведенным на рис. 4.4, а.  [c.92]

На рис. 6.6, а представлено семейство кривых 1-3 к -1) в зависимости от величины для различных значений параметра 7,. Расчет jV, N" произведен с использованием физических свойств воды и водяного пара в состоянии насыщения при р = 1 бар. Кроме того, принято X = 10 Вт/(м К) 5 = 10 мм i>o = 2 °С. Параметр Bi в этих условиях изменяется за счет изменения расхода охладителя G. Полному испарению этого расхода охладителя и перегреву его внутри пористой стенки до 350 °С соответствует значение внешнего теплового потока <7, указанное на дополнительной оси абсцисс.  [c.138]


Полученное выражение является характеристическим уравнением для определения величины к - I ъ зависимости от параметров у, о, В х, El, I, N, N", N3. Решение его представлено на рис. 1.2,а в виде зависимости к - I 01 В 2 для трех значений параметра у. Расчет У, У произведен с использованием физических свойств воды и водяного пара в состоянии насыщения при атмосферном давлении. Кроме того, принято до = 2 °С 6=10 мм X = 10 Вт/(м К) / =0,052 Ei =0,5. Значениям параметра у = 10 31,6 100 при этих условиях соответствуют величины /1у= 10 , 10 , 10 Вт/(м - К).  [c.163]

Необходимо подчеркнуть, что (8.6) и (8.14), которые описывают интегральные по сечению параметры смеси, не содержат каких-либо допущений относительно термодинамического состояния обеих фаз, кроме допущений о том, что удельный объем воды на линии насыщения определяемый по стандартным таблицам теплотехнических свойств воды и водяного пара [42], в малой степени зависит от температуры и давления жидкой фазы. Вследствие этого метастабильность состояния воды практически не сказывается на точности расчетов. Относительно паровой фазы такого допущения не делается.  [c.170]

Приводятся значения параметров состояния и теплоемкости воды и водяного пара при температурах до 1 000 С и давлениях до 1 ООО ат. Изложена сущность теории ассоциации реального газа, положенной в основу вывода уравнения состояния, и даны пояснения к таблицам.  [c.175]

Характер изменения коэффициента теплопроводности воды и водяного пара в зависимости от параметров состояния показан на рис, 2-2.  [c.18]

Только в 1968 г. впервые была разработана и утверждена в качестве международной система уравнений состояния для точного описания термодинамических свойств воды и водяного пара, охватывающая всю область параметров состояния, представляющую практический интерес. Эта система уравнений с высокой точностью описывает наиболее достоверные экспериментальные данные, полученные в разных странах в результате осуществления международной программы исследований термодинамических свойств воды и водяного пара.  [c.3]

Подробные таблицы термодинамических свойств воды и водяного пара при давлениях до 101 МПа (1000 КГС/СМ2) и температурах до 800° С, включая состояние насыщения, даны в [Л.2]. В табл. 5-93 даны значения термодинамических параметров воды и водяного пара в объеме, достаточном пая большинства практических расчетов.  [c.235]

Таблицы. термодинамических свойств воды и водяного пара позволяют производить все необходимые расчеты, связанные с применением водяного пара "как рабочего вещества. С помощью этих таблиц можно проанализировать все основные термодинамические процессы, определить.состояние пара по известным параметрам и пр.  [c.20]

Для водяного пара не существует простого и точного уравнения состояния. Поэтому зависимость между его параметрами приводится в специальных таблицах, которые составлены на основании экспериментальных данных и называются таблицами термодинамических свойств воды и водяного пара или просто таблицами водяного пара.  [c.169]

Прежде чем переходить к рассмотрению таблиц и диаграмм воды и водяного пара, а также методов их использования, необходимо установить общие связи между параметрами в характерных состояниях парообразования, показанных на диаграмме (рис. 109).  [c.169]

Зависимость между основными параметрами перегретого пара, т. е. между р, v, Т, обычно приводится в таблицах воды и водяного пара и в диаграммах. Это объясняется тем, что для перегретого пара, так же как и для любого реального газа, нет простого и удобного для расчетов уравнения состояния.  [c.173]

Количественные (числовые) зависимости между различными параметрами воды, сухого насыщенного и перегретого пара устанавливаются специальными таблицами воды и водяного пара. Эти таблицы составляют с использованием как уравнения состояния, так и экспериментальных данных.  [c.175]


Плотность исследуемого вещества при опытных значениях параметров состояния определялась нн ЭЦВМ по Международной системе уравнений состояния для точного описания термодинамических свойств воды и водяного пара [3]. По проведенным оценкам, максимальная относительная погрешность измерений коэффициента динамической вязкости почти во всем диапазоне исследованных давлений и температур не превышает 1%. Исключение составляют опытные данные для давлений, близких к критическому (205—220 бар), где значения удельных объемов на линии насыщения имеют допуск 2—3%. Воспроизводимость опытных данных при всех параметрах не хуже 0,3%, что свидетельствует о малой величине случайных ошибок.  [c.58]

Приведены таблицы значений удельного объема, энтальпии, энтропии, изобарной теплоемкости, скорости звука, поверхностного натяжения, динамической вязкости, теплопроводности и числа Прандтля для воды и водяного пара, рассчитанных по уравнениям, рекомендованным Международной ассоциацией по свойствам воды и водяного пара для применения в промышленных расчетах. Таблицы термодинамических свойств охватывают область параметров до температуры 800 °С и давления 100 МПа (до 1000 °С при давлениях ниже 10 МПа), включая состояния насыщения. Для этой же области параметров даны и значения динамической вязкости. Предельная температура области применения данных о теплопроводности в зависимости от давления — от 800 до 500 °С.  [c.2]

Характер изменения некоторых теплофизических свойств воды и водяного пара в зависимости от параметров состояния иллюстрируется графиками, представленными в Приложении.  [c.4]

Экономии памяти машины и времени расчета способствует применение уравнений состояния воды и водяного пара, разработан-ных специально для использования в теплоэнергетических расчетах. Такие нелинейные алгебраические уравнения состояния выражают в явном или неявном виде зависимости энтальпии, энтропии и удельного объема от температуры и давления пара. Они выводятся путем аппроксимации с достаточной степенью точности соответствующих табличных данных. Удобными для расчета являются, в частности, уравнения состояния, имеющие вид полиномов разных степеней — функций основных параметров - давления и температуры). Эти полиномы легко программируются по схеме Горнера  [c.175]

В вычислительные машины затруднительно ввести табличные данные параметров воды и пара во всей необходимой для расчета тепловой схемы области. Можно ввести и машину часть табличных данных (узловые точки), определяя промежуточные значения параметров методами линейной или квадратичной интерполяции. Целесообразно вместо таблиц при машинном расчете тепловой схемы пользоваться специальными уравнениями состояния воды и водяного пара, выражающими одни параметры через другие, например энтальпию перегретого пара или сжатой воды в зависимости от давления и температуры или, обратно, температуру в зависимости от энтальпии и давления энтальпию насыщенного сухого пара в зависимости от температуры или давления энтальпию насьаценного влажного пара в зависимости от энтальпии сухого пара и воды и степени сухости пара.  [c.159]

Оценка точности результатов измерения. Для экспериментальной изохоры значение удельного объема определяется при помощи таблиц термодинамических свойств воды и водяного пара по измеренным параметрам некоторого состояния р и i. Поэтому максимальная относительная погрешность определения удельного объема в соответствии с (4.35) равна  [c.135]

Параметры состояни пара, так же как и величины <7 и J, во всех этих процессах можно определять либо с помощью вышеприведенных формул, либо по таблицам воды и водяного пара, либо по диаграмме —1.  [c.114]

Второе направление эмпирическое. На основе ряда теоретических положений путем обработки экспериментальных данных получен ряд эмпирических и полуэмпи-рических уравнений, описывающих свойства воды и водяного пара в разных областях состояния с различной степенью точности. Большинство этих уравнений обладает рядом общих недостатков параметры вблизи линии насыщения при больших давлениях, в критической и околокритической области, пригодны для сравнительно узких областей состояния, недостаточно термодинамически согласованы. К ним относятся интерполяционные  [c.12]

В книгу включены также таблицы коэффициентов переноса (динамической вязкости и теплопроводности) воды и водяного пара. Первые Международные скелетные таблицы коэффициентов переноса, утвержденные в 19 4 г. (МСТ-64) [5], охватывали более узкую область параметров состояния, чем МСТ-63 для термодинамических свойств. В результате проведения по международной программе новых исследований динамической вязкости и теплопроводности были получены многочис-ленные экспериментальные данные, на основе которых составлены и утверждены новые Международные нормативные материалы о вязкости (1975 г.) [6, 7] и теплопроводности (1977 г.) [8] воды и водяного пара. Помещенные в книге подробные таблицы коэффициентов переноса составлены на основе указанных нормативных материалов и охватывают ту же область параметров состояния, что и таблицы термодинамических свойств. На Основе этих же материалов составлена таблица чисел Прандтля. При расчете значений коэффициента поверхностного натяжения использован международный нормативный материал 1976 г. К книге прилагается удобная для многих практических расчетов К s-диаграмма водяного пара в двух системах единиц.  [c.4]


Пакет прикладных программ для- автоматизации процесса построения термодинамических уравнений состояния [33]. Пакет построен по принципу интерпретатора, что позволяет организовать хорошую диагностику, легко расширять входной язык пакета и его функции. Модульная организация пакета обеспечивает его легкую модернизацию. Пакет состоит из управляющего блока-мопитора, семи обрабатывающих блоков, базового набора модулей для расчета термодинамических параметров воды и водяного пара и базы данных пакета — архива уравнений. Исходные данные включают область изменения параметров, для которой необходимо построить уравнение список параметров, являющихся аргументами список параметров, для которых необходимо построить уравнения. В соответствии с запросом осуществляется выбор метода построения уравнений, выбор формы уравнений, определения коэффициентов аппроксимации, аналитическое преобразование уравнений согласно дифференциальным соотношениям термодинамики и проведение оценки точности уравнений. Пакет реализован на языке Фортран-lV для ЭВМ М-4030 ДОС АСВТ (версия 1.2). Он мон ет применяться на ЕС ЭВМ на моделях не ннлсе ЕС-1033. Для работы пакет требует около 160 Кбайт оперативной памяти.  [c.179]

Книга содержит таблицы термодинамических свойств воды и водяного пара, а также вязкости и теплопроводности в области параметров состояния до 400 KZj j и 750° С.  [c.2]

На созданной в Физической лаборатории Всесоюзного теплотехнического института (ВТИ) экспериментальной установке были проведены измерения коэффициента динамической вязкости водяного пара при телше-ратурах от 175 до 450° С и давлениях до 350 бар [1]. Эти измерения подтвердили существование аномальной зависимости вязкости водяного пара от давления на изотермах в области, ранее исследованной Кестнным [2], и позволили получить надежные данные в ранее практически не исследованной области параметров состояния. Результаты проведенных опытов показали, что принятая при составлении Международной скелетной таблицы (МСТ) однозначная зависимость избыточной вязкости (fi — Hi) от плотности Н8 соблюдается и что эта таблица нуждается в существенной переработке, поскольку расхождение данных МСТ и опытных достигает 13%, т. е. более чем в 3 раза превышает допуск МСТ. Наши измерения, результаты которых приведены в [1], не охватывали, однако, области параметров состояния, прилегающей к линии насыщения. Следует также отметить, что в МСТ не были зафиксированы значения коэффициента динамической вязкости воды и пара на линии насыщения при температурах выше 300 С, так как данные для этой области были немногочисленными и противоречивыми. В связи с осуществлением Международной программы исследований, направленных наразработку новых скелетных таблиц коэффициентов переноса воды и водяного пара, в Физической лаборатории ВТИ была поставлена работа по подробному исследованию вязкости воды и пара вблизи линии насыщения.  [c.57]


Смотреть страницы где упоминается термин Параметры состояния воды и водяного пара : [c.510]    [c.509]    [c.162]    [c.175]    [c.333]    [c.13]   
Смотреть главы в:

Термодинамика и теплопередача  -> Параметры состояния воды и водяного пара



ПОИСК



Вес водяных паров

Вода Пары —

Вода, водяной пар

Водяной пар

Водяные пары

О ределение параметров состояния воды и водяного пара

Определение параметров состояния воды и водяного пара

Определение параметров характерных состояний воды и водяного пара и связь между ними

Параметры пара

Параметры пара и воды

Параметры состояния

Пары воды



© 2025 Mash-xxl.info Реклама на сайте