Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критические и закритические явления

КРИТИЧЕСКИЕ И ЗАКРИТИЧЕСКИЕ ЯВЛЕНИЯ  [c.242]

Критические и закритические явления  [c.170]

Экспериментальные измерения теплоемкостей широко проводят также при изучении критических явлений. Вопросы термодинамики критических и закритических явлений как в однокомпонентных, так и в многокомпонентных системах рассматривались в работах многих ученых. Например, Семенченко в ряде своих работ высказывал предположение, что теплоемкость смесей веществ в критической области должна проходить через максимум [25, 26]. Экспериментальные определения теплоемкостей, проведенные для ряда жидких смесей вода—фенол, вода — триэтиламин, нитробензол — н-гептан, нитробензол — н-октан и др., — подтвердили это предположение.  [c.251]


Задача о колебаниях вала с диском, расположенным симметрично по отношению к опорам, была первой задачей в области изгибных колебаний вращающихся валов, разрешавшейся теоретически и экспериментально. В 1869 г. Рэнкиным [10] впервые был сделан теоретический анализ колебательного движения гибкого вала с диском, а в 1889 г. Лавалем была построена турбина с гибким валом, рабочая угловая скорость которого была выше его критической скорости. Применение такого вала было основано на использовании обнаруженного эффекта самоцентрирования вала, проявляющегося в закритической области вращения. Если при скорости вращения ниже критической всякая неуравновешенность детали (диска), прикрепленной к валу, вызывает большие колебания и динамические реакции подшипников, то при скорости вращения выше критической, как показали теория и опыт, колебания успокаиваются и практически почти уничтожаются при дальнейшем возрастании скорости. В этом, собственно, и состоит явление самоцентрирования, удачно использованное для создания новой для того времени конструкции вала турбины.  [c.118]

Однако оболочка при потере устойчивости может также перейти в новое, достаточно удаленное от основного состояние (хлопок). Критерием такого перехода является стремление скорости изменения прогиба по параметру воздействия к бесконечности при стремлении самого параметра к критическому значению. Это значение определяется при решении нелинейной задачи, сформулированной, например, уравнениями (11.20), (11.21). Такой подход к исследованию устойчивости гибких оболочек при ползучести принят, в частности, в работах [14,82]. Отметим, что закритическое поведение оболочек не исследуется и динамические явления, связанные с нагружением и потерей устойчивости, не рассматриваются.  [c.28]

Описанное явление можно наблюдать при любой нагрузке выше нижней критической р и ниже верхней критической р. Чем ближе сила к верхнему пределу, тем меньшее возмущение требуется, чтобы перебросить систему из положения ф = 0 в положение ф = я. Если под устойчивостью системы понимать ее способность сохранять свое состояние неизменным, то следует считать, что при нагрузке в указанном интервале равновесие ф = о неустойчиво относительно конечных возмущений, или, как говорят, неустойчиво в болыиом. В то же время при нагрузке Р < р <. р это равновесие устойчиво по отношению к бесконечно малым возмущениям, или устойчиво в малом. Заметим, что для системы с устойчивым закритическим поведением при нагрузке р р первоначальное состояние устойчиво не только в малом, но и в большом. Таким, например, является положение  [c.405]


В закритической области вещество находится в однородном состоянии, и в нем отсутствует резкое разделение на отдельные фазы, что имеет место при пересечении пограничной кривой вдали от критической точки. Различие между жидкостью и паром в этой области носит лишь количественный характер, поскольку между ними можно осуществить непрерывный переход без выделения или поглощения скрытой теплоты изменения агрегатного состояния. Однако в указанных переходах непрерывный ряд микроскопических однородных состояний содержит области максимальной микроскопической неоднородности флуктуац ионного характера. Существование такой микроскопической неоднородности связано с падением термодинамической устойчивости первоначальной фазы и с возникновением внутри >нее островков более устойчивой фазы. Указанная внутренняя перестройка вещества, несмотря на свою нелрерывность, имеет узкие участки наибольшего сосредоточения, которые обусловливают появление резких скачков теплоемкости, сжимаемости, коэффициента объемного расширения, вязкости и других свойств вещества. Эти явления демонстрировались рис. 1-5, где был показан характер изменения критерия Прандтля для воды, и перегретого водяного пара от температуры и давления, и рис. 1-6 — для кислорода в зависимости от температуры при закритическом давлении. Из графиков следует, что при около- и закритиче-ских давлениях наряду с областями резкого изменения физических параметров имеются области, где они изменяются с температурой незначительно. При высоких давлениях в области слабой зависимости тепловых параметров от температуры теплоотдача подчиняется обычным критериальным зависимостям. В этом случае при проведении опытов можно не опасаться применения значительных температурных перепадов между стенкой и потоком жидкости, обработка опытных данныл также не  [c.205]

В решении Собея [7.51] (1966) использовалась функция прогиба (6.1) с двадцатью шестью членами. При различных значениях амплитуд aoh начального прогиба построены кривые напряжениедеформация , содержащие устойчивые ветви исходного и части ветвей закритического состояний. Качественно кривые похожи на кривые Доннелла — Вана. Отмечается, что при ао > 0,25 явление хлопка практически исключается. В этом случае за критическое значение нагрузки можно принимать ее наибольшую величину. Для относительного верхнего критического напряжения в зависимости от величины ао получены значения  [c.122]

Лорентцен [319] провел исследование с углекислотой в вертикальных трубках. Трубки были длиной 20 и 5 см. Распределение плотности по высоте определялось оптически — измерялось кажущееся расстояние между двумя тонкими вертикальными линиями, помещенными за трубкой. Интересно, что этот метод был предложен для изучения критических явлений и испытан еще Голицыным [322], однако работа Голицына мало известна и нигде не упоминается. В [319] при переходе к новой температуре в закритической области время релаксации плотности достигало многих часов. Так, при понижении температуры от Г — = 0,090° до Г — = 0,020° распределение плотности по высоте, установившееся после 3 час термо-статирования, заметно отличалось от того распределения, которое наблюдалось после 48 час. На первый взгляд такое поведение кажется непонятным. Обычно локальное отклонение плотности от равновесного значения сопровождается возникновением градиента давления и вызывает поток вещества, быстро восстанавливающий равновесие. Семенченко [246, 323, 22] обратил внимание на то, что развитие флуктуаций должно замедлять происходянще в непрерывной системе процессы. Наличие беспорядочно расположенных градиентов флуктуирующих параметров приводит к ослаблению действия искусственно создаваемых градиентов, представляющих в неравновесной термодинамике силы, управляющие данным процессом.  [c.296]

Голицын одним из первых обратил внимание на сильное замедление релаксации плотности. Он поставил серию интересных опытов [317], по сделанные им выводы нуждаются в некотором уточнении. Если заданы температура и давление вещества, то в состоянии термодинамического равновесия плотность закритической фазы однозначно определена этими параметрами. Наблюдаемые длительное время изменения плотности в частях системы свидетельствуют не об отсутствии такой однозначности, как думал Голицын, а о необычайно малой скорости приближения к равновесию. Еще более наглядно, чем в однокомпонентных системах, замедление установления вещественного равновесия около критической точки жидкость — пар проявляется в двойных смесях [328, 329]. Например, в [329] наблюдалось практически полное прекращение диффузии йода в углекислоте. Леонтович [330] показал, что для разбавленных растворов это явление обусловлено слабой зависимостью химического потенциала как от концентрации, так и от плотности. Теоретическое изучение  [c.300]



Смотреть страницы где упоминается термин Критические и закритические явления : [c.366]    [c.55]    [c.375]    [c.188]   
Смотреть главы в:

Термодинамика  -> Критические и закритические явления

Термодинамика и статистическая физика  -> Критические и закритические явления



ПОИСК



Явление

Явления закритические

Явления критические



© 2025 Mash-xxl.info Реклама на сайте