Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Бифуркация цилиндрической оболочки

Бифуркация цилиндрической оболочки  [c.352]

На рис. 16.3 приведены результаты расчета по теории Ильюшина (кривая 1), теории устойчивости, построенной на основе теории течения с изотропным упрочнением (кривая 2) и модифицированной теории (кривая 3) для сжатых стальных цилиндрических оболочек ( = 2-10 МПа, ат = = 390 МПа). Экспериментальные результаты (отмечены кружочками) лучше подтверждают теорию устойчивости Ильюшина, построенную на основе деформационной теории. Дело в том, что до-критический сложный процесс по траекториям малой кривизны в момент бифуркации имеет бесконечно малое продолжение без излома траектории в направлении касательной к траектории деформации. Следовательно, теория течения с изотропным упрочнением не описывает сложный процесс выпучивания в момент бифуркации. Аналогичное явление наблюдается при использовании теории пластичности для траекторий средних кривизн. Если используются теория течения и теория средних кривизн, для вычисления интегралов Nm, Рт следует применять соотношения (16.45), (16.46) при со = 0 и со = (й соответственно.  [c.347]


На рис. 16.7, 16.8, 16.9 приведены результаты расчетов по определению интенсивности напряжений сг в момент чисто пластической бифуркации для цилиндрической оболочки из сплава В95 по различным теориям при сжатии, кручении и сжатии с кручением. Кривые 1 отвечают модифицированной теории, 2 — теории устойчиво-  [c.355]

Цилиндрическая оболочка, будучи системой с несимметричной диаграммой и неустойчивой точкой бифуркации, проявляет острую чувствительность к несовершенствам (см. разделы 6.4 и 7.4) даже весьма небольшие начальные искривления поверхности с выпуклостью, направленной к центру кривизны, приводят к заметному падению верхней критической нагрузки. Диаграмма сила — перемещение неидеальной оболочки имеет вид кривой 2 на рис. 18.78, в.  [c.419]

В отличие от этого критерия в ряде работ исследуется возможность бифуркации основного моментного состояния с мгновенным упругим переходом в соседнюю близкую равновесную форму. Момент бифуркации определяется как критический. Возможность бифуркации объясняется интенсивным развитием сжимающих усилий в срединной поверхности оболочки вследствие ее деформирования при ползучести. Такой подход близок к эйлерову. При этом кроме уравнений основного состояния необходимы уравнения устойчивости в малом . Существование нетривиальных вещественных решений этих уравнений для некоторого момента времени свидетельствует о возможности бифуркации. Это значение времени может быть меньшим значения, соответствующего выпучиванию оболочки в большом . Подобная методика использована, например, в работах [18, 20, 21, 71, 84, 91], причем для замкнутых круговых цилиндрических оболочек вводятся осесимметричные начальные прогибы и основное состояние рассматривается как осесимметричное, а близкие формы равновесия — как неосесимметричные. В работе [91] предпринята попытка исследовать устойчивость смежной несимметричной формы равновесия на основе изучения закритического поведения оболочки.  [c.6]

В задаче устойчивости цилиндрической оболочки, сжатой в осе-вом направлении (рис. 8.14, а), диаграмму деформирования (рис. 8.14, 6) принято строить в координатах q, Я, где q — сжимающая погонная нагрузка % — сближение торцов оболочки. Эта диаграмма качественно отличается от диаграмм, построенных в 7.4 для сжатых стержней и пластин. Прямая ОВ соответствует равномерному сжатию идеально правильной оболочки. Когда нагрузка достигнет значения <7кр, соответствующего точке бифуркации В , начальная форма равновесия перестанет быть устойчивой. Но в окрестности точки у оболочки нет новых устойчивых состояний равновесия и поэтому, как и при нагружении внешним давлением, оболочка теряет устойчивость хлопком. Заметим, что для гладкой изотропной оболочки Ядр =  [c.246]


На примере цилиндрической оболочки R/h — 100 L/R = = 2,5 Е = 2,06 10 МПа v = 0,3 покажем влияние жесткости основания на величину критической нагрузки и форму волнообразования при потере устойчивости [179]. Точки ветвления решения соответствуют классической проблеме бифуркации состояния [141].  [c.89]


Смотреть страницы где упоминается термин Бифуркация цилиндрической оболочки : [c.268]    [c.281]   
Смотреть главы в:

Основы теории упругости и пластичности  -> Бифуркация цилиндрической оболочки



ПОИСК



Бифуркация

Оболочка цилиндрическая



© 2025 Mash-xxl.info Реклама на сайте