Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хром Упругость диссоциации

Положительное влияние вакуума на качество сварных соединений выражается в том, что значительно ускоряются и облегчаются процессы выхода газов и диссоциации оксидов не только в поверхностных, но и из внутренних слоев металла. Удаление кислорода и азота из сварочной ванны при электронно-лучевой сварке происходит тем полнее, чем больше упругость диссоциации оксидов и нитридов. Так, при сварке меди, кобальта, никеля в камере с разрежением 6,5-10 Па обеспечивается диссоциация оксидов этих металлов. Также диссоциируют нитриды алюминия, ниобия, хрома, магния, молибдена и некоторых других металлов с высокой упругостью диссоциации нитридов.  [c.401]


Безокислительные условия горячей и теплой деформации ниобия, тантала, титана, циркония, ванадия, хрома (вторая группа) не обеспечиваются при технически допустимом вакууме, так как они обладают низкой упругостью диссоциации окислов. Однако анализ кинетики окисления показывает, что при переходе к низкому вакууму скорость протекания реакций окисления резко уменьшается. Поэтому изменение глубины вакуума должно вызвать изменение толщины и свойств окисной пленки на металле (см. рис. 278).  [c.527]

Следует отметить, что с повышением температуры упругость диссоциации окисла углерода возрастает в наименьшей степени по сравнению со всеми указанными в таблице элементами. В результате этого из таких элементов, как железо, углерод, кремний, марганец, хром, наибольшим сродством к кислороду при наиболее высоких температурах обладает углерод, за ним следует кремний, марганец, хром и железо. При температурах затвердевания металла наибольшее сродство к кислороду приобретает кремний, в меньшей степени углерод, марганец, хром и железо.  [c.49]

Величина упру ости диссоциации окислов некоторых металлов приведена в табл. 1. Из таблицы видно, что наименьшую упругость диссоциации имеют окислы алюминия, титана, кремния, хрома, цинка и марганца. Окислы мади, никеля, молибдена и железа имеют более высокую упругость диссоциации.  [c.7]

Большинство металлов (железо, хром, никель, алюминий и кобальт) образуют нелетучие окислы, упругость диссоциации которых весьма незначительна.  [c.917]

Сопротивление окислению чугуна, так же как и стали, обусловлено образованием на поверхности металла плотных окисных защитных плен, возможность образования которых связана с упругостью диссоциации окислов если упругость диссоциации выше парционального давления кислорода в воздухе, окисление не имеет места (благородные металлы). Когда упругость диссоциации окислов меньше парционального давления кислорода в воздухе, металл покрывается (если окись не летучая) окисной пленкой. Окислы таких элементов, как железо, никель, хром, алюминий и кремний обладают низкой упругостью диссоциации даже при высоких температурах. И, естественно, сплавы, в состав которых входят указанные элементы, постоянно покрыты окисной пленкой.  [c.197]

Поведение металла в парах воды при высоких температурах зависит от многих факторов. В первую очередь оно определяется соотношением между упругостью диссоциации соответствующего окисла металла и парциальным давлением кислорода в продуктах диссоциации воды, а также различием в тепловых эффектах образования воды и соответствующих окислов металлов. Наиболее трудно окисляется перерретым водяным паром никель и хорошо — хром. Железо занимает промежуточное положение. На практике хром, никель, титан и другие металлы менее подвержены разрушению вследствие окисления в сравнении с железом. Объясняется это различием физических свойств оксидной пленки, образующейся на разных металлах.  [c.37]


Пайка в вакууме. Бесфлюсовая пайка с применением разреженного газа при давлении ниже Ю Па называется пайкой в вакууме. При создании в печи или контейнере вакуума с определенной степенью разрежения парциальное давление кислорода становится ниже упругости диссоциации оксидов. Эти условия необходимы для диссоциахдаи оксидов и предупреждения повторного окисления поверхностей паяемых деталей при нагреве в процессе пайки. В вакууме обычно паяют медь, никель, вольфрам, титановые сплавы, высоколегированные и жаропрочные стали. Сплавы, содержащие в своем составе значительное количество алюминия или хрома, при пайке в низком и среднем вакууме требуют дополнительного флюсования, так как оксиды алюминия и хрома очень устойчивы, имеют малое давление пара и начинают испаряться при высоких температурах, близких к температурам их плавления.  [c.531]

В свете рассмотренных работ становится ясным, что фактором, определяющим химическую устойчивость окислов при высоких температурах, является пе температура их илавлепня, как думал Таммап, который ввел понятие реакционной температуры, зависящей от температуры плавления, а упругость диссоциации окислов [189]. Если иметь в виду кинетические процессы из трех рассматриваемых ниже окислов, наиболее устойчивым в восстановительной среде будет корунд, несмотря на то, что температура его плавления (2050° С) значительно ниже таковой окиси хрома (2300° С) и окиси магиия (2800° С). Корунд отличается от указанных окислов самой низкой упругостью диссоциации [253].  [c.109]

Защиту от окисления особенно трудно осуществить при спекании металлов, образующих трудновосстановимые окислы (хром, титан, алюминий), упругость диссоциации которых очень низкая. При спекании таких металлов потребуется тщательная очистка защитного газа от кислорода. Выбор защитной среды в значительной степени зависит от состава спекаемых изделий, типа пе-  [c.322]

Окислы таких элементов как медь, никель, кобальт при всех температурах жидкой стали в зоне сварки имеют большую упругость диссоциации, чем закись, железа (см. фиг. 9 и табл. 6). Поэтому они не вступают в реакцию с кислородом, растворенным в сварочной ванне, и практически полностью усваиваются швом. Вольфрам и молибден имеют сродство к кислороду почти такое же, как железо, и не могут рассматриваться как элементы-раскислители. Углерод, кремний, марганец, хром, ванадий, титан и алюминий при соответствующих условиях (концентрация и температура) вступают во взаимодействие с кислородом, растворенным в железе, и образуют соответствуюпще окислы.  [c.111]

Например, при взаимодействии алюминия с кислородом по реакции 4А1 + -Ь ЗОг = 2А12О3 достаточно иметь содержание кислорода при температуре 727° С, равное 10 чтобы произошло образование окисла. При этом чем ниже упругость диссоциации окисла, тем меньше его летучесть. Наиболее прочные (нелетучие) окислы образуются на алюминии, титане, хроме, марганце, кремнии.  [c.7]

Особенности диффузионной сварки никеля и его сплавов определяются их свойствами и составом, в частности термодинамической прочностью окисной пленки, сопротивлением ползучести и деформационной способностью металла. На чистом никеле при нагреве образуется только один окисел NiO, имеющий сравнительно высокую упругость диссоциации 1,3-10 — 1,3-10 Па при 1273— 1373 К. Однако никель, как -переходный металл, образует с кислородом устойчивый хемосорбированный комплекс. Удаление кислорода обусловлено его диффузией при сварке в глубь металла. Растворимость кислорода в никеле составляет 0,012% при 1473 Кис понижением температуры увеличивается. Расчеты показывают, что длительность растворения окисной пленки толщиной 0,005 мкм в никеле при температуре 1173—1473 К изменяется от нескольких секунд до десятых долей секунды. Поэтому окисная пленка на никеле не вызывает особых затруднений при сварке. Электротехнические никелевые сплавы типа монель и константан также образуют термодинамически непрочные окислы, близкие к никелю по другим свойствам, и их сварка существенно не отличается от сварки никеля. Жаропрочные никелевые сплавы являются сложнолегированными и имеют в своем составе хром, алюминий, титан, молибден, вольфрам, ниобий и другие элементы, обладающие большим сродством к кислороду и обеспечивающие высокую жаростойкость и жаропрочность. Именно эти свойства и затрудняют диффузионную сварку жаропрочных сплавов. Наличие весьма прочной и трудно удалимой окисной пленки, богатой хромом, алюминием, титаном, препятствует диффузионной сварке. Удаление этих окислов из стыка связано с протеканием сложных окислительно-восстановительных процессов.  [c.163]


Защиту от окисления особенно трудно осуществить при спекании металлов, образующих трудновосстановимые окислы (хром, титан, алюминий), упругость диссоциации которых очень низкая. При спекании таких металлов потребуется тщательная очистка защитного газа от кислорода. Выбор защитной среды в значительной степени зависит от состава спекаемых изделий, типа печей, экономических факторов и т. п. Взаимодействие с атмосферой ие должно приводить к образованию соединений, ухудшающих свойства спеченных тел. В целом атмосфера спекания влияет на десорбцию газов, рафинирование, восстановление и диссоциацию окислов, перенос металла через газовую фазу, образование устойчивых и неустойчивых соединений при взаимодействии с материалом спекаемого тела, поверхностную диффузию атомов и др.  [c.347]

Пайка широко применяется при изготовлении различных конструкций и соединений и обеспечивает в зависимости от марки припоя и способа пайки требуемые прочностные свойства [775— 777]. Трудности пайки нержавеющих сталей связаны с наличием на их поверхности прочных окисных пленок, состоящих из окислов хрома, алюминия, титана и никеля, препятствующих хорошему смачиванию поверхности соединения. Окисные пленки обладают большой адгезивной способностью, они химически стойки, имеют низкие упругости паров диссоциации и при нагреве в атмосфере воздуха и других средах снова быстро образуются там, где они отсутствуют. Поэтому поверхность изделий, подлежащих пайке, следует тщательно очищать от загрязнений (жир, краска, окалина, пыль и др.), препятствующих смачиванию. Очистку производят механическим способом металлическими  [c.743]


Смотреть страницы где упоминается термин Хром Упругость диссоциации : [c.226]   
Машиностроение Энциклопедический справочник Раздел 3 Том 6 (1948) -- [ c.167 ]



ПОИСК



Диссоциации упругость

Диссоциация

Хрома

Хромали

Хромиты



© 2025 Mash-xxl.info Реклама на сайте