Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь Величина зерна - Влияние легирующих элементов

Прокаливаемость даже одной и той же стали может колебаться в значительных пределах в зависимо-мм сти от колебаний химического состава, величины зерна размера и формы изделия и многих других факторов. Поэтому прокаливаемость стали каждой марки характеризуют не кривой, а полосой прокаливаемости, которая также не всегда отражает действительную прокаливаемость стали в изделии. Полосы прокаливаемости для углеродистой и легированной сталей, содержащих 0,4% С, наглядно показывающие влияние легирующих элементов на прокаливаемость, приведены на рис. 150.  [c.224]


Вводя в углеродистую сталь специальные легирующие элементы и производя термическую обработку, можно получить весьма высокие характеристики прочности и пластичности. К наиболее распространенным элементам, применяемым в конструкционных сталях, относятся никель, хром, молибден, вольфрам, ванадий, медь, марганец (выше 1%) и кремний (выше 0,5%). Уровень механических войств углеродистых сталей при данной величине зерна определяется полученной структурой. Структура углеродистых конструкционных сталей при комнатной температуре состоит из 95—97% феррита и 5—3% карбида. Поэтому необходимо проанализировать влияние легирующих элементов на эти структурные составляющие для выяснения возможности повышения прочности и вязкости.  [c.29]

Влияние легирующих элементов на вязкость разрушения прежде всего обусловлено их воздействием на величину зерна. Элементы, способствующие измельчению зерна, повышают вязкость разрушения, а элементы, упрочняющие твердые растворы, наоборот понижают вязкость разрушения. Эффективное измельчение зерна достигается введением карбидообразующих элементов ванадия, ниобия, титана. Использование алюминия для раскисления способствует получению в спокойных сталях более мелкого зерна, чем в кипящих и полуспокойных.  [c.106]

Однако для легированных и особенно жаропрочных сталей влияние углерода более сложно, так как их твердость и тем самым обрабатываемость зависит от содержания легирующих элементов, поскольку последние дают карбиды различной твердости. В зависимости от режима термической обработки, т. е. температуры и времени выдержки, изменяется величина зерна твердого раствора, количество выделений упрочняющих фаз и их дисперсность. В этом случае с увеличением содержания углерода может быть замедлен рост зерна и тем самым улучшена обрабатываемость.  [c.328]

Испытание на прокаливаемости — важнейший метод оценки влияния на свойства стали легирующих элементов, величины зерна, однородности аустенита, сегрегации и пр. и в общей форме — оценки условий выплавки стали. В не-  [c.343]

Первое издание вышло в 1964 г. Во втором, переработанном и дополненном издании рассмотрены физические основы прокаливаемости стали, дана классификация сталей по прокаливаемости, показано влияние на прокаливаемость легирующих элементов и примесей, величины зерна аустенита, исходной структуры и дисперсности карбидной фазы, химической микронеоднородности и других факторов. Рассмотрены также пути управления прокаливаемостью и некоторые методы ее определения. На примерах показан принцип выбора стали по прокаливаемости.  [c.2]


Влияние температуры закалки. Хорошо известно, что фактический состав аустенита в момент закалки определяется не только средним химическим составом стали, но и температурой нагрева, которая оказывает непосредственное влияние на степень растворения карбидной фазы и полноту перехода легирующих элементов и углерода в твердый раствор. Точно так же и величина зерна, и однородность аустенита определяются не только составом стали, но и температурой закалки.  [c.98]

Прокаливаемость (глубина закалки) определяется расстоянием от поверхности до слоя с полумартенситной структурой, т. е. до слоя, состоящего из 50% мартенсита и 50% троостита. Прокаливаемость стали зависит от ее химического состава, величины природного зерна, метода ее выплавки и других факторов. Например, такие легирующие элементы, как марганец, хром, оказывают большое влияние на прокаливаемость, а никель, кремний — незначительное. С увеличением природного зер-  [c.32]

Эти исследования оказались весьма полезными как для разработки теории термической обработки стали, так и для решения ряда практических вопросов. На основе сделанных обобщений и диаграмм был дан анализ действия при термической обработке различных закалочных сред, обоснованы процессы ступенчатой и изотермической закалки и изотермического отжига, позволившие значительно улучшить качество изделий после термической обработки. Был разработан метод многократного отпуска быстрорежущей стали. Было выявлено влияние различных легирующих элементов и величины зерна при термической обработке стали.  [c.18]

Теоретическое значение таких диаграмм заключается в том, что они хотя и охватывают меньший опытный материал в сравнении с диаграммой сплавов железа с углеродом, так как для сталей с неодинаковым содержанием углерода и разных марок они различны, но зато содержат чрезвычайно важный фактор времени. Диаграммы изотермического превращения аустенита дают картину всех изменений аустенита (кинетику его превращения) при разных температурах, позволяют в наглядной форме объяснить происхождение и природу структур, получаемых при термической обработке. Они выявляют влияние температуры превращения на структуру и свойства стали. Эти диаграммы позволяют оценить действие величины зерна и легирующих элементов на превращение аустенита, глубину прокаливаемости, микроструктуру, механические и другие свойства стали. Наконец, они служат обоснованием теории термической обработки стали.  [c.178]

Химический состав стали — наличие легирующих элементов, сдвигающих вправо кривую начала превращения на диаграммах изотермического превращения аустенита, —увеличивает глубину прокаливаемости. Наибольшее влияние на прокаливаемость оказывают марганец, молибден и хром, влияние кремния и никеля меньше. Чем меньше величина аустенитного зерна, тем более влево сдвигается кривая начала превращения аустенита на диаграммах изотермического превращения и тем меньше глубина прокаливаемости стали.  [c.195]

Рост зерна в деформированных сталях и сплавах, происходящий вследствие развития собирательной рекристаллизации, может приводить к значительному укрупнению кристаллической структуры. Однако следует учитывать, что нагрев металлов и сплавов в процессе обработки давлением не является окончательной операцией и сопровождается, как правило, последующей деформацией. В данном случае деформация значительно измельчает крупнокристаллическую структуру, образовавшуюся при нагреве и собирательной рекристаллизации. Отсюда можно заключить, что температура начала собирательной рекристаллизации не является потолком нагрева перед обработкой давлением. Поэтому при установлении температур обработки температуры начала собирательной рекристаллизации вследствие положительного влияния деформации должны учитываться с возможным повышением их в зависимости от величины последующей деформации. Температуры собирательной рекристаллизации жаропрочных сплавов и отдельных легирующих элементов определялись также рентгеновским методом.  [c.124]


Рассмотренные выше данные о влиянии кристаллической структуры и химического состава стали на ее проницаемость для водорода получены для образцов в виде стальных мембран (раздел 1.3.1). Однако этот метод эксперимента никоим образом не характеризует количество поглощенного (окклюдированного) металлом водорода. Способность металла поглощать водород зависит от ряда факторов 1) плотности упаковки а сомов в кристаллической решетке металла (чем выше плотность упаковки, тем выше ее энергетический уровень и тем больше водорода в виде протонов может быть связано в решетке) 2) количества дефектов структуры решетки, наличия в ней коллекторов для накодления молекулярного водорода 3) величины зерна и ширины межзеренных прослоек 4) вида и количества легирующих элементов, формы, в которой они присутствуют з С1шаве.  [c.83]

На общее повышение прочности стали большое влияние оказывает равномерность растворения легирующих элементов по объему зерен. Поверхностно-активные легирующие элементы (так называемые горофильные), которые концентрируются главным образом по границам зерен, оказывают очень сильное влияние на величину зерна, на прокаливаемость и другие свойства стали при введении в сталь даже в очень малых количествах (на-  [c.122]

Весьма существенное влияние на склонность легированного фер рита или низкоуглеродистой стали к хладноломкости оказывает величина действительного зерна, количество и характер распределения неметаллических включений и металлургическая природа стали. На фиг. 24 представлено влияние концентрации растворенно го в феррите легирующего элемента на критическую температуру хрупкости при двух размерах зерна феррита № 1—0 (фиг. 24, а) и № 6—5 (фиг. 24, б). Переход из вязкого состояния в хрупкое (температура Т ) в основном зависит от величины зерна феррита  [c.36]


Смотреть страницы где упоминается термин Сталь Величина зерна - Влияние легирующих элементов : [c.476]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.342 ]



ПОИСК



Влияние легирующее

Зерно

Легирующие элементы

Сталь Влияние

Сталь Влияние легирующих элементов

Сталь легированная

Сталь элементов

Сталя легированные

см Элементы легирующие — Влияние



© 2025 Mash-xxl.info Реклама на сайте