Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поглощение звука в жидкости в трубе

Такой же частотной зависимостью характеризуется поглощение звука, распространяющегося в жидкости или в газе вблизи твердой стенки (например, по трубе) см. VI, 79.  [c.184]

Несколько иной метод определения коэффициента поглощения звука был предложен в работе [57]. Схема установки приведена на рис. 21. Ультразвуковое поле (1 Мгц), создаваемое источником полностью заполняло трубку с исследуемой жидкостью 2 трубка имела обводной капиллярный канал 3 для обратного потока. Согласно соотношению (31), при радиусе звукового пучка, равном радиусу трубы, скорость акустического течения обращается в нуль. В экспериментальных условиях, конечно, из-за неоднородности звукового поля по сечению трубки и влияния пограничного слоя вблизи стенок, а в описываемой установке еще из-за тока жидкости через капиллярный канал 3 перенос жидкости имеется, однако скорость его существенно меньше скорости течения в свободном звуковом поле. Влияние динамического давления потока на механический приемник радиационного давления 4 было при этих условиях относительно мало. Отраженный от приемника 4 звук поглощался поглотителем 5. Авторы работы [58] отказались от абсолютного измерения звукового поля радиометром, потому что приемный элемент радиометра, отражая звук, не позволял создать полностью бегущую волну (в этой работе плотность звуковой энергии определялась из импедансов излучателя в воздухе и в жидкости). Согласно закону Гагена — Пуазейля, скорость движения  [c.123]


В воздухе непропорционально большие эффекты могут быть вызваны незначительной относительной влажностью или небольшой примесью СО2, равно как и пылью, а также шероховатостью стенок (в трубах). Для большинства жидкостей поглощение сильно зависит от частоты кроме того, необходимо тщательно следить за содержимым пузырька. Так, при относительном объеме пузырька, равном 0,17%, скорость распространения звука  [c.71]

Точное решение для плоской синусоидальной волны конечной амплитуды, распространяющейся в газах и жидкостях без учета диссипации, было получено Риманом более 100 лет назад. Однако экспериментальное обнаружение искажения формы волны и измерения амплитуды второй гармоники (ее зависимость от расстояния, нелинейного параметра, начальной интенсивности, частоты и др.) были сделаны сравнительно недавно. Л. Л. Мясников [13] экспериментально исследовал явление искажения в трубе, заполненной газом, создавая в ней интенсивные звуковые плоские синусоидальные волны. В жидкостях первые эксперименты для плоских синусоидальных волн достаточно большой интенсивности были проведены на ультразвуковых частотах в работах [14, 15]. Было обнаружено искажение формы синусоидальной у излучателя звуковой волны по мере ее распространения и превращение ее (при определенных интенсивностях) в слабую периодическую пилообразную ударную волну, а также возникающее при этом нелинейное поглощение. Было показано, что нелинейные свойства жидкости играют существенную роль при распространении даже не слишком интенсивного звука вопреки распространенному представлению о несущественности  [c.72]

В свободном неоднородном звуковом поле в отсутствие препятствий и границ радиационные силы вызывают движение газа и жидкости. Импульс волны, передаваемый за счет поглощения звука в среде, идет на образование течения. В начальной стадии после включения звука происходит ускорение среды, приводящее к установлению стационарного движения газа или жидкости. Это движение называют акустическим течением или акустическим ветром. На рис 5.3 показан характер акустического течения на частотах ультразвукового диапазона (несколько МГц). Такое течение принято называть эккартовским, поскольку его теория была развита Эккар-том 120]. Как видно из рисунка, излучающая пьезоэлектрическая пластинка занимает только частьповерхности кюветы, заполненной жидкостью. При включении звука жидкость в сосуде начинает приходить в движение. Его нетрудно наблюдать, если поместить в жидкость немного алюминиевого порошка и сбоку осветить жидкость через прозрачную стенку кюветы. По прошествии некоторого времени движение жидкости устанавливается и имеет вид течения с противотоком. Такое акустическое течение было бы невозможно, если бы пьезопластинка закрывала всю левую поверхность кюветы (или трубы), так как тогда не было бы противотока жидкости и не выполнялся бы закон сохранения массы. Однако, вообще говоря, в случае неоднородного распределения амплитуды по фронту волны незначительное акустическое течение в принципе возможно, а вблизи стенок, в пограничном слое, оно возникает и в случае однородного по фронту звукового поля (см. ниже). Из рис. 5.3 следует, что масштаб вихрей эккартовского течения порядка объема кюветы и он существенно больше длины звуковой волны X радиус ультразвукового пучка также значительно больше X.  [c.135]


На фпг. 123 приведены аналогичные результаты для поглощения звука в пресной и морской воде [40]. Для пресной воды измеренные значения поглощения в 2,5 раза больше, чем вычисленные с учетом соотношения (5.21) и теплопроводности. Полученное расхождение объясняется влиянием объемной вязкости, механизм которого рассматривается в статье Холла [41 ], а также во втором томе данной серии (в главе, написанной Литовицем), Увеличение поглощения в морской воде связано с релаксационными эффектами, обусловленными главным образом присутствием в воде Мд304, Наряду с рассмотренными причинами, влияющими на распро-страиепие волн в свободном пространстве или в ограниченной среде на высоких частотах, существует еще один источник поглощения энергии, имеющий место в трубах иа низких частотах, кото-Р1.1Й дает существенно большие потери, чем потери, связанные с вязкостью и теплопроводностью среды. Поглощение в узких трубах объясняется тем, что газ или жидкость пе скользит вдоль стенок трубы, а образует пограничный слой очень малой толщины. Этот слой между стенкой и движущейся жидкостью характерен тем, что в пем распространяются вязкие сдвиговые волны. Эти волны [12, 38] создают комплексное сопротивление движению, равное  [c.426]

Формула (329) была экспериментально проверена Дёрзингом [517]. Она применима только для тех частот, для которых диаметр О трубы мал по сравнению с длиной волны или, другими словами, для частот, много меньших резонансной частоты радиальных колебаний трубы. Поэтому в формулу (329) не входит частота. В ультразвуковой области это условие не выполнено и, как уже упоминалось выше в этом пункте, возможно возникновение радиальных резонансов, оказывающих сильное влияние на распространение звука вдоль трубы. Действительно, при исследовании распространения ультразвука по трубе, заполненной жидкостью, Бойлю, Фроману и Филду [329, 331, 332, 599] удалось экспериментально обнаружить дисперсию звука и селективное поглощение. В качестве примера на фиг. 432 дан график частотной зависимости скорости звука в заполненной керосином стеклянной трубке (внутренний диаметр 3,1 см, толщина стенок 1,4 мм). Из расположения экспериментальных точек видно, что скорость звука уменьшается при приближении к частоте радиального резонанса, затем возрастает скачком и при дальнейшем повышении частоты снова уменьшается, приближаясь к значению скорости в неограниченной среде. Сплошные кривые рассчитаны по теории Филда [592, 594, 597].  [c.393]

ГИДРАВЛИЧЕСКОЕ СОПРОТИВЛЕНИЕ, сопротивление движению жидкостей (и газов) по трубал , каналам и т. д., обусловленное их вязкостью. См. Гидродинамическое сопротивление. ГИДРОАКУСТИКА (от греч. Ьу<1ог-вода и акустика), раздел акустики, в к-ром с целью подводной локации, связи и т. п. изучается распространение звук, волн в водной среде (в океанах, морях, озёрах и т. д.). Особенность подводных звуков — их слабое затухание, вследствие чего под водой звук может распространяться на значительно большие расстояния, чем, напр., в воздухе. Так, в диапазоне частот 500— 2000 Гц дальность распространения под водой звука ср. интенсивности достигает 15—20 км, а в диапазоне УЗ частот — 3—5 км. Звук мог бы распространяться и на значительно большие расстояния, однако в естеств. условиях, кроме затухания, обусловленного вязкостью воды, ослабление звука происходит за счёт рефракции звука и его рассеяния и поглощения разл. неоднородностями среды. Рефракция звука вызывается неоднородностью св-в воды, гл. обр. по вертикали, вследствие  [c.117]


Смотреть страницы где упоминается термин Поглощение звука в жидкости в трубе : [c.14]   
Механика сплошных сред Изд.2 (1954) -- [ c.373 ]



ПОИСК



Поглощение

Поглощение звука

Поглощение звука в жидкостях



© 2025 Mash-xxl.info Реклама на сайте