Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поглощение звука в воздухе в жидкостях

Механизм поглощения звука пузырьками воздуха в воде достаточно сложен. Это поглощение вызывается многими причинами, но основными из них можно считать две во-первых, отвод тепла от пузырька к жидкости при периодических изменениях объёма пузырька, которые он испытывает под действием проходящей звуковой волны, и, во-вторых, рассеяние части энергии звуковой волны за счёт того, что пузырёк при своих пульсациях сам становится излучателем звука. Это излучение, или рассеяние, происходит по всем направлениям благодаря малым размерам пузырька. Механизм поглощения звука пу-  [c.318]


Условия излучения звука и ультразвука в жидкость значительно более благоприятны, чем излучение в воздух. Это обстоятельство наряду с малым поглощением ультразвука в воде имеет очень большое значение для практических применений ультразвука в подводной акустике. Средняя акустическая мощность, излучаемая колеблющейся поверхностью, размеры которой велики по сравнению с длиной волны, определяется выражением  [c.289]

Механизм поглош,ения звука пузырьками воздуха в воде достаточно сложен. Это поглощение вызывается многими причинами, но основными из них можно считать две во-первых, отвод тепла от пузырька к жидкости при периодических изменениях объема пузырька, которые он испытывает под действием проходящей звуковой волны, и, во-вторых, рассеяние части энергии звуковой волны за счет того, что пузырек при своих пульсациях сам становится излучателем звука. Это излучение, или рассеяние, происходит по всем направлениям благодаря малым размерам пузырька. Механизм поглощения звука пузырьками воздуха во многом аналогичен механизму релаксационного поглощения звука в многоатомных газах, который мы кратко разобрали в пятой главе.  [c.329]

Несколько иной метод определения коэффициента поглощения звука был предложен в работе [57]. Схема установки приведена на рис. 21. Ультразвуковое поле (1 Мгц), создаваемое источником полностью заполняло трубку с исследуемой жидкостью 2 трубка имела обводной капиллярный канал 3 для обратного потока. Согласно соотношению (31), при радиусе звукового пучка, равном радиусу трубы, скорость акустического течения обращается в нуль. В экспериментальных условиях, конечно, из-за неоднородности звукового поля по сечению трубки и влияния пограничного слоя вблизи стенок, а в описываемой установке еще из-за тока жидкости через капиллярный канал 3 перенос жидкости имеется, однако скорость его существенно меньше скорости течения в свободном звуковом поле. Влияние динамического давления потока на механический приемник радиационного давления 4 было при этих условиях относительно мало. Отраженный от приемника 4 звук поглощался поглотителем 5. Авторы работы [58] отказались от абсолютного измерения звукового поля радиометром, потому что приемный элемент радиометра, отражая звук, не позволял создать полностью бегущую волну (в этой работе плотность звуковой энергии определялась из импедансов излучателя в воздухе и в жидкости). Согласно закону Гагена — Пуазейля, скорость движения  [c.123]


В газах и жидкостях, не засоренных взвешенными частицами, пузырьками воздуха (в жидкости), рассеяние отсутствует, и затухание определяется только поглощением. Коэффициент поглощения пропорционален квадрату частоты. В связи с этим в качестве характеристики поглощения звука в жидкостях и газах вводят параметр 6/р (табл. 3).  [c.192]

Ввиду малой длины волны У. характер его распространения определяется в первую очередь молекулярной структурой среды, поэтому, измеряя скорость с и коэф. затухания а, можно судить о молекулярных свойствах вещества (см. Молекулярная акустика). Характерная особенность распространения У. в многоатомных газах и во мн. жидкостях—существование областей дисперсии звука, сопровождающейся сильным возрастанием его поглощения. Эти эффекты объясняются процессами релаксации (см. Релаксация акустическая). У. в газах, и в частности в воздухе, распространяется с большим затуханием (см. Поглощение звука). Жидкости и твёрдые тела (особенно монокристаллы) представляют собой, как правило, хорошие проводники У., затухание в них значительно меньше. Поэтому области использования У. средних и высоких частот относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и газах применяют только У. низких частот.  [c.215]

В воздухе непропорционально большие эффекты могут быть вызваны незначительной относительной влажностью или небольшой примесью СО2, равно как и пылью, а также шероховатостью стенок (в трубах). Для большинства жидкостей поглощение сильно зависит от частоты кроме того, необходимо тщательно следить за содержимым пузырька. Так, при относительном объеме пузырька, равном 0,17%, скорость распространения звука  [c.71]

Упругие волны могут распространяться не только в газах и жидкостях, но и в твёрдых телах. При этом в однородных твёрдых телах (в большинстве металлов — в железе, стали, алюминии) условия распространения упругих волн более благоприятны, чем, например, в воздухе звук распространяется в металлах на большие расстояния, испытывая гораздо меньшее поглощение.  [c.349]

Если привести нелинейное обобщение теории колебаний газового пузырька в жидкости, о которой у нас речь шла выше, то можно получить уравнение состояния смеси (считая р/ржо малым параметром здесь Ржо — равновесное давление в жидкости и / — акустическое давление) [54]. На основе этого уравнения состояния можно определить эффективный показатель адиабаты смеси, т. е. ее нелинейный параметр у, выражение для которого было получено впервые в [55]. Этот нелинейный параметр оказывается на несколько порядков больше, чем нелинейный параметр чистой воды. Так, например, при объемном содержании воздуха в воде в отсутствие звука У 2-10 этот нелинейный параметр 7 5700 ( ). Ясно, что при таких больших значениях у нелинейные эффекты проявляются чрезвычайно сильно, большим становится и нелинейное поглощение [561.  [c.168]

Методика измерения поглощения звука в газах в принципе аналогична методике, применяемой при измерениях в жидкостях. Большинство измерений было выполнено при помощи ультразвукового интерферометра. Так, Пильмайер [1565—1567, 1570] уже в 1929—1930 гг. подробно исследовал поглощение звука в воздухе, Og и Оз, пользуясь интерферометром Пирса. Белявская [224] также применяла этот метод при измерении поглощения в воздухе и СОз.  [c.330]

Вопрос о поглощении звука в среде со взвешенными мелкими частицами впервые был теоретически рассмотрен в работе Севелла [1918] для случая частиц, не участвующих в колебаниях среды. Это условие неподвижности частиц удовлетворяется, например, для водяных капель в воздухе уже при слышимых звуковых частотах, но для частиц, взвешенных в жидкости, не выполняется даже при относительно более высоких частотах звука. Ввиду сказанного значения поглощения звука, измеренные Гартманом и Фокке в водных суспензиях спор ликоподия, совпадают с теоретически рассчитанными значениями лишь для очень высоких частот порядка 2500 кгц.  [c.299]

Особенно сильно нагреваются поверхности раздела двух облучаемых ультразвуком сред. Так, например, согласно опытам Фройндлиха, Золльнера и Роговского [661], в данном объеме масла выделяется больше тепла, если в масло помещены стеклянные шарики или дробь. При неизменном общем весе дроби нагревание увеличивается с уменьшением радиуса дробинок, т. е. с увеличением поверхности соприкосновения дробинок с маслом. Этим же объясняется тот факт, что с наступлением кавитации за счет образующихся при этом пузырьков воздуха сильно возрастает поглощение звука в жидкости и выделяемое тепло.  [c.541]


ГИДРАВЛИЧЕСКОЕ СОПРОТИВЛЕНИЕ, сопротивление движению жидкостей (и газов) по трубал , каналам и т. д., обусловленное их вязкостью. См. Гидродинамическое сопротивление. ГИДРОАКУСТИКА (от греч. Ьу<1ог-вода и акустика), раздел акустики, в к-ром с целью подводной локации, связи и т. п. изучается распространение звук, волн в водной среде (в океанах, морях, озёрах и т. д.). Особенность подводных звуков — их слабое затухание, вследствие чего под водой звук может распространяться на значительно большие расстояния, чем, напр., в воздухе. Так, в диапазоне частот 500— 2000 Гц дальность распространения под водой звука ср. интенсивности достигает 15—20 км, а в диапазоне УЗ частот — 3—5 км. Звук мог бы распространяться и на значительно большие расстояния, однако в естеств. условиях, кроме затухания, обусловленного вязкостью воды, ослабление звука происходит за счёт рефракции звука и его рассеяния и поглощения разл. неоднородностями среды. Рефракция звука вызывается неоднородностью св-в воды, гл. обр. по вертикали, вследствие  [c.117]

Др. особенность У.—возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, т. к. при данной амплитуде плотность потока энергии пропори, квадрату частоты, УЗ-волны большой интенсивности сопровождаются рядом нелинейных эффектов. Так, для интенсивных плоских УЗ-волн при малом поглощении среды (особенно в жидкостях, твёрдых телах) синусоидальная у излучателя волна превращается по мере её распространения в слабую периодич. ударную волну (пилообразной формы) поглощение таких волн оказывается значительно больше (т. н. нелинейное поглощение), чем волн малой амплитуды. Распространению УЗ-волн в газах и жидкостях сопутствует движение среды, т. н. акустическое течение, скорость к-рого зависит от вязкости среды, интенсивности У. и его частоты вообще говоря, она мала и составляет долго % от скорости У. К числу важных нелинейных явлений, возникающих при распространении интенсивного У. в жидкостях, относится акустич. кавито1(ия. Интенсивность, соответствующая порогу кавитации, зависит от рода жидкости и степени её чистоты, частоты звука, темп-ры и др. факторов в водопроводной воде, содержащей пузырьки воздуха, на частоте 20 кГц она составляет доли Вт/см . На частотах диапазона У. средних частот в УЗ-поле с интенсивностью начиная с неск. Вт/см могут возникнуть фонтанирование жидкости и распыление её с образованием весьма мелкодисперсного тумана. Акустич, кавитация широко применяется в технол. процессах при этом пользуются У. низких частот.  [c.215]

Эта величина, естественно, зависит от акустического числа Маха и от нелинейных свойств среды. В табл. 8 приведены значения Л для нескольких интенсивностей ультразвука в двух жидкостях, имеющих одинаковые волновые сопротивления, но существенно различающихся нелинейными свойствами, и в воздухе при нормальных условиях. Там же указаны амплитуды скорости смещений соответствующие им числа Маха, скорость звука Го и плот-гюсть среды Ро в последнем столбце таблицы привеа,ены критические расстояния для двух частот V = Со/(л<А)). Согласно этой таблице, нелинейные искажения в газах при указанных интенсивностях могут достигать значительной величины непосредственно у источника. Однако, покшмо отмеченной уже низкой эффективности излучения ультразвука в газы, в них очень велико поглощение ультразвуковых волн. В жидкостях же, лаже при самых больших числах хМаха  [c.78]

На рис. 37 приведено семейство кривых изменения концентрации воздуха в воде при его поглощении в звуковом поле на частоте 1 Мгц для объемной плотности энергии =9 10" , 7-10 , 3-10" вт-сек1см (соответственно кривые 1—3). Пунктирная кривая характеризует ход процесса абсорбции в отсутствие звука. Ход кривых показывает, что поглощение газа продолжается до тех пор, пока не достигается состояние с определенной концентрацией газа, которую мы, как и в случае дегазации, назовем квазиравновесной и обозначим С". По мере приближения к квазиравновесному состоянию скорость поглощения газа спадает. Как и при рассмотрении кинетики выделения газа из жидкости, введем коэффициент массообмена Однако при абсорбции он учитывает главным образом газоперенос через свободную поверхность жидкости, и, следовательно (дело в том, что стабильные пузырьки в недонасы-  [c.303]

Так как, согласно Бойлю, Тейлору и Фро-ману [347], кавитация наблюдается уже при силе звука 0,03 вт1см , увеличение поглощения при больших значениях силы звука можно объяснить появлением пузырьков воздуха (см. также [1794]). Поэтому при измерениях поглощения в жидкости нельзя пользоваться ультразвуковыми колебаниями большой мощности.  [c.288]


Смотреть страницы где упоминается термин Поглощение звука в воздухе в жидкостях : [c.270]    [c.781]    [c.101]    [c.122]    [c.631]    [c.520]    [c.14]    [c.780]   
Ультразвук и его применение в науке и технике Изд.2 (1957) -- [ c.273 ]



ПОИСК



Воздух жидкости

Поглощение

Поглощение звука

Поглощение звука в воздухе

Поглощение звука в жидкостях



© 2025 Mash-xxl.info Реклама на сайте